Foundation of Cryptography (0368-4162-01), Fall 2011

Iftach Haitner

Problem set 4. Exercises 7-9

December 22, 2011

Due: January 5

- Send your solutions in a PDF format to foc.exc@gmail.com.
- Solution for each exercise should be emailed *separately*, title: Exe # (e.g., 3), Id (Israel id) (write the same details in the body of the attached file).
- Please *don't* write your name in the email/attached file.
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In case you work in (small) groups, please write the id list of your partners in the solution file. I stress that each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")
- The notation we use appear in the first lecture (www.cs.tau.ac.il/~iftachh/Courses/FOC/Fall11/Slides/OWF.pdf), section "Notation"

Exe 7 (10 points): Let $g: \{0,1\}^n \mapsto \{0,1\}^{3n}$ be a PRG and consider the following commitment scheme:

Protocol 1 ((S,R)). Commit stage:

Common input: 1^n

S's input: $b \in \{0, 1\}$

Commit:

- 1. R chooses $r \leftarrow \{0,1\}^{3n}$ and sends it to S
- 2. S chooses $x \leftarrow \{0,1\}^n$. Sends c = g(x) to S in case b = 0, and $c = g(x) \oplus r$ otherwise.

Reveal stage:

Common input: 1^n and $r, c \in \{0, 1\}^{3n}$

S's input: $b \in \{0, 1\}$ and $x \in \{0, 1\}^{3n}$.

S sends (b, x) to **R**, and **R** accepts iff (b, x) is consistent with r and c (i.e., c = g(x) in case b = 0, and $c = g(x) \oplus r$ otherwise).

Prove the above scheme is statistically-binding and computationally-hiding (bit) commitment scheme.

Hint: for the binding part, prove that for most fixing of r, the scheme is *perfectly* binding.

Exe 8, (10 points): Prove Claim 1 in Lecture 6.

Exe 9, (10 points): Prove the ZK part of Claim 12 in Lecture 6. That is, assuming that S_H is a good simulator for \mathcal{L} in the hidden bit model (HBM), and that *b* is an hardcore predicate for the family (G, f, Inv) ,¹ then S of Algorithm 13 is a good simulator for \mathcal{L} in the standard model (according to Definition 2).

Recall that in the HBM, we require that

 $\{(x, \{c_i\}_{i \in \mathcal{I}}, \pi_H, \mathcal{I})_{c \leftarrow \{0,1\}^{p(|x|)}, (\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x,c)}\}_{x \in \mathcal{L}} \approx_c \{x, \mathsf{S}_H(x)\}_{x \in \mathcal{L}}, \text{ where the set } \{c_i\}_{i \in \mathcal{I}}$ is ordered (i.e., given as ordered list c_{i_1}, \ldots, c_{i_k} , where i_j is the j'th smallest element in \mathcal{I}) and $p \in \text{poly}$ is a parameter of the proof system.

¹I.e., for any PPT A and $p \in \text{poly}$, it holds that $\mathsf{Pr}_{sk \leftarrow \{0,1\}^n, pk = G(sk), x \leftarrow \{0,1\}^n}[\mathsf{A}(pk, f(pk, x)) = b(x)] < \frac{1}{2} + \frac{1}{p(n)}$ for large enough n.