Foundation of Cryptography (0368-4162-01), Lecture 8 Encryption Schemes

Iftach Haitner, Tel Aviv University

January 3 - 17, 2012

Section 1

Definitions

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **O** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(*d*, *c*) outputs *m* ∈ $\{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **O** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(*d*, *c*) outputs *m* ∈ $\{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **O** G(1^{*n*}) outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **③** D(*d*, *c*) outputs *m* ∈ $\{0, 1\}^*$

- e encryption key, d decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **O** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(*d*, *c*) outputs *m* ∈ $\{0, 1\}^*$

- *e* encryption key, *d* decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key

• What would we like to achieve?

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

• Shannon – only for *m* with $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- Shannon only for *m* with $|m| \leq |G(1^n)_1|$
- Other concerns, e.g., multiple encryptions, active adversary

Active Adversaries

Semantic Security

Semantic Security

O Ciphertext reveal "no information" about the plaintext

Semantic Security

Semantic Security

- O Ciphertext reveal "no information" about the plaintext
- Pormulate via the simulation paradigm

Semantic Security

Semantic Security

- O Ciphertext reveal "no information" about the plaintext
- Pormulate via the simulation paradigm
- Output the state of the stat

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0,1}^* \mapsto {0,1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n} e_{\leftarrow G(1^n)}, [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)}, [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

 $-\mathsf{Pr}_{m\leftarrow\mathcal{M}_n}[\mathsf{A}'(1^n,1^{|m|},h(1^n,m))=f(1^n,m)]\big|=\mathsf{neg}(n)$

poly-bounded?

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0,1}^* \mapsto {0,1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] - \Pr_{m \leftarrow \mathcal{M}_n}[A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)]|= \operatorname{neg}(n)$

• poly-bounded? for simplicity we assume polynomial length

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0,1}^* \mapsto {0,1}^* | \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

- oply-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK

Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f: {0,1}^* \mapsto {0,1}^*$ $|\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK
- public-key variant A gets e

Active Adversaries

Indistinguishablity

Indistinguishablity of encryptions

• The encryption of two strings is indistinguishable

Active Adversaries

Indistinguishablity

Indistinguishablity of encryptions

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Indistinguishablity

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and poly-time B,

$$\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1] |$$

= neg(n)

Indistinguishablity

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and poly-time B,

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1]|$$

= neg(n)

Non-uniform definition

Indistinguishablity

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and poly-time B,

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1]|$$

= neg(n)

- Non-uniform definition
- Public-key variant

Active Adversaries

Equivalence

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Active Adversaries

Equivalence

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Active Adversaries

Equivalence

Indistinguishability \implies Semantic Security

Definitions

Constructions

Active Adversaries

Equivalence

Indistinguishability \implies Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition 2.

Active Adversaries

Equivalence

Indistinguishability \implies Semantic Security

Fix M, A, f and h, be as in Definition 2. We construct A' as

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

•
$$e \leftarrow G(1^n)_1$$

2
$$c = E_e(1^{|m|})$$

3 Output
$$A(1^n, 1^{|m|}, h(m), c)$$

Active Adversaries

Equivalence

Indistinguishability \implies Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition 2. We construct A' as

Algorithm 5 (A')

Input: 1^{*n*}, 1^{|*m*|} and *h*(*m*)

•
$$e \leftarrow G(1^n)$$

2
$$c = E_e(1^{|m|})$$

Claim 6

A' is a good simulator for A (according to Definition 2)

Constructions	Active Adversaries
	Constructions

For $n \in \mathbb{N}$, let

$$\delta(n) := \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right|$$

For $n \in \mathbb{N}$, let

$$\delta(n) := \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right|$$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with

$$\delta(n) \le \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|x_n|}, h(1^n, x_n), E_e(x_n)) = f(1^n, x_n)] - \mathsf{Pr}[\mathsf{A}'(1^n, 1^{|x_n|}, h(1^n, x_n)) = f(1^n, x_n)] \right|$$

For $n \in \mathbb{N}$, let

$$\delta(n) := \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right|$$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with

$$\delta(n) \le \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|x_n|}, h(1^n, x_n), E_e(x_n)) = f(1^n, x_n)] - \mathsf{Pr}[\mathsf{A}'(1^n, 1^{|x_n|}, h(1^n, x_n)) = f(1^n, x_n)] \right|$$

Proof: Write the lhs and rhs terms in the definition of $\delta(n)$ as sums over the different choices of $m \in \text{Supp}(\mathcal{M}_n)$, and use $|a + b| \le |a| + |b|$

Equivalence

Assume \exists an infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t. } \delta(n) > 1/p(n)$ for every $n \in \mathcal{I}$.

Equivalence

Assume \exists an infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t. } \delta(n) > 1/p(n)$ for every $n \in \mathcal{I}$. The following algorithm contradicts the indistinguishability of (G, E, D) with respect to $\{(x_n, y_n = 1^{|x_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Algorithm 8 (B)

Input: $z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n)), c$ Output 1 iff $A(1^n, 1^{|x_n|}, h(x_n), c) = f(1^n, x_n)$

Equivalence

Semantic Security \implies Indistinguishability

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg) for infinitely many *n*'s: (1)

$$\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

Equivalence

Semantic Security \implies Indistinguishability

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg) for infinitely many *n*'s: (1)

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

• Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.

• Let
$$f(1^n, x_n) = 1$$
, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n)$.

• Define A(1^{*n*}, 1^{ℓ (*n*)}, *z_n*, *c*) to return B(*z_n*, *c*).

Equivalence

Semantic Security \implies Indistinguishability

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg) for infinitely many *n*'s: (1)

$$\begin{aligned} & \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \geq \frac{1}{p(n)} \\ & \bullet \text{ Let } \mathcal{M}_n \text{ be } x_n \text{ wp } \frac{1}{2} \text{ and } y_n \text{ otherwise.} \\ & \bullet \text{ Let } f(1^n, x_n) = 1, \ f(1^n, y_n) = 0 \text{ and } h(1^n, \cdot) = z_n). \\ & \bullet \text{ Define } \mathsf{A}(1^n, 1^{\ell(n)}, z_n, c) \text{ to return } \mathsf{B}(z_n, c). \end{aligned}$$

$$\begin{aligned} & (2) \\ & \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \geq \frac{1}{2} + \frac{1}{p(n)} \end{aligned}$$

Equivalence

Semantic Security \implies Indistinguishability

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg) for infinitely many *n*'s: (1)

$$\begin{aligned} &\mathsf{Pr}_{e \leftarrow G(1^{n})_{1}}[\mathsf{B}(z_{n}, E_{e}(x_{n})) = 1] - \mathsf{Pr}_{e \leftarrow G(1^{n})_{1}}[\mathsf{B}(z_{n}, E_{e}(y_{n})) = 1] \geq \frac{1}{p(n)} \\ &\bullet \mathsf{Let} \ \mathcal{M}_{n} \ \mathsf{be} \ x_{n} \ \mathsf{wp} \ \frac{1}{2} \ \mathsf{and} \ y_{n} \ \mathsf{otherwise.} \\ &\bullet \mathsf{Let} \ f(1^{n}, x_{n}) = 1, \ f(1^{n}, y_{n}) = 0 \ \mathsf{and} \ h(1^{n}, \cdot) = z_{n}). \\ &\bullet \mathsf{Define} \ \mathsf{A}(1^{n}, 1^{\ell(n)}, z_{n}, c) \ \mathsf{to} \ \mathsf{return} \ \mathsf{B}(z_{n}, c). \end{aligned}$$

$$\begin{aligned} &(2) \\ &\mathsf{Pr}_{m \leftarrow \mathcal{M}_{n}, e \leftarrow G(1^{n})_{1}}[\mathsf{A}(1^{n}, 1^{|m|}, h(1^{n}, m), E_{e}(m)) = f(1^{n}, m)] \geq \frac{1}{2} + \frac{1}{p(n)} \\ &\mathsf{where} \ \mathsf{for} \ any \ \mathsf{A}' \end{aligned}$$

$$\begin{aligned} &(3) \\ &\mathsf{Pr}_{m \leftarrow \mathcal{M}_{n}, e \leftarrow G(1^{n})_{1}}[\mathsf{A}(1^{n}, 1^{|m|}, h(1^{n}, m), E_{e}(m)) = f(1^{n}, m)] \leq \frac{1}{2} \end{aligned}$$

Active Adversaries

Multiple Encryptions

Security Under Multiple Encryptions

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in poly$,

 $\{x_{n,1}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}},$ $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1| = \operatorname{neg}(n)$$

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in poly$,

 $\{x_{n,1}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and polynomial-time B},$

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1| = \operatorname{neg}(n)$$

Extensions:

Different length messages

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in poly$,

 $\{x_{n,1}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and polynomial-time B},$

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1| = \operatorname{neg}(n)$$

Extensions:

- Different length messages
- Semantic security version

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in poly$,

 $\{x_{n,1}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and polynomial-time B},$

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1| = \operatorname{neg}(n)$$

Extensions:

- Different length messages
- Semantic security version
- Public-key definition

Multiple Encryption in the Public-Key Model

Theorem 10

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Multiple Encryption in the Public-Key Model

Theorem 10

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B, $\{x_{1,t(n)}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$

Multiple Encryption in the Public-Key Model

Theorem 10

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B, $\{x_{1,t(n)}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$ It follows that for some function $i(n) \in [t(n)]$

$$|\Pr[B(1^{n}, e, E_{e}(x_{n,1}), \dots, E_{e}(x_{n,i-1}), E_{e}(y_{n,i}), \dots, E_{e}(y_{n,t(n)})) = 1] - \Pr[B(1^{n}, e, E_{e}(x_{n,1}), \dots, E_{e}(x_{n,i}), E_{e}(y_{n,i+1}), \dots, E_{e}(y_{n,t(n)})) = 1]| > \operatorname{neg}(n)$$

where in both cases $e \leftarrow G(1^n)_1$

Algorithm 11 (B')

Input: 1^{*n*}, $z_n = (i(n), x_{1,t(n)}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$ Return B($c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})$)

Algorithm 11 (B')

Input: 1^{*n*}, $z_n = (i(n), x_{1,t(n)}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$ Return B(*c*, $E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})$)

B' is critically using the public key

Multiple Encryptions

Multiple Encryption in the Private-Key Model

Fact 12

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Multiple Encryption in the Private-Key Model

Fact 12

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0, 1\}^n \mapsto \{0, 1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i (see Lecture 2, Construction 15).

Multiple Encryption in the Private-Key Model

Fact 12

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0, 1\}^n \mapsto \{0, 1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i (see Lecture 2, Construction 15).

Construction 13

- G(1^{*n*}) outputs $e \leftarrow \{0, 1\}^n$,
- $\mathsf{E}_{e}(m)$ outputs $g^{|m|}(e)\oplus m$
- $\mathsf{D}_e(c)$ outputs $g^{|c|}(e)\oplus c$

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof:

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \operatorname{neg}(n)$$
(4)

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \operatorname{neg}(n)$$
(4)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \operatorname{neg}(n)$$
(4)

Hence, B implies a (non-uniform) distinguisher for g

Claim 15

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \operatorname{neg}(n)$$
(4)

Hence, B implies a (non-uniform) distinguisher for g

Claim 15

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof:

Claim 14

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \operatorname{neg}(n)$$
(4)

Hence, B implies a (non-uniform) distinguisher for g

Claim 15

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1} = x_{n,2}$, $y_{n,1} \neq y_{n,2}$ and D(c_1, c_2) outputs 1 iff $c_1 = c_2$

Section 2

Constructions

Suffice to encrypt messages of some fixed length (here the length is n).

Suffice to encrypt messages of some fixed length (here the length is *n*). Let \mathcal{F} be a (non-uniform) length preserving PRF

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 16

- G(1^{*n*}): output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- D_e(r, c): output e(r) ⊕ c

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Let \mathcal{F} be a (non-uniform) length preserving

Construction 16

- G(1^{*n*}): output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- D_e(r, c): output e(r) ⊕ c

Claim 17

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a multiple messages

Suffice to encrypt messages of some fixed length (here the length is n).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 16

- G(1^{*n*}): output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- D_e(r, c): output e(r) ⊕ c

Claim 17

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a multiple messages

Proof:

Let (G, f, Inv) be a (non-uniform) TDP, and let *b* be an hardcore predicate for *f*.

Let (G, f, Inv) be a (non-uniform) TDP, and let *b* be an hardcore predicate for *f*.

Construction 18 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0, 1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Let (G, f, Inv) be a (non-uniform) TDP, and let *b* be an hardcore predicate for *f*.

Construction 18 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 19

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has public-key indistinguishable encryptions for a multiple messages

Let (G, f, Inv) be a (non-uniform) TDP, and let *b* be an hardcore predicate for *f*.

Construction 18 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0, 1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 19

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has public-key indistinguishable encryptions for a multiple messages

 We believe that public-key encryptions schemes are "more complex" than private-key ones

Section 3

Active Adversaries

Active Adversaries

Chosen plaintext attack (CPA): The adversary can ask for encryption and choose the messages to distinguish accordingly

- Chosen plaintext attack (CPA): The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA): The adversary can also ask for *decryptions* of certain messages

- Chosen plaintext attack (CPA): The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA): The adversary can also ask for *decryptions* of certain messages

- Chosen plaintext attack (CPA): The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA): The adversary can also ask for *decryptions* of certain messages
- In the public-key settings, the adversary is also given the public key

- Chosen plaintext attack (CPA): The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA): The adversary can also ask for *decryptions* of certain messages
- In the public-key settings, the adversary is also given the public key
- We focus on indistinguishability, but each of the above definitions has an equivalent semantic security variant.

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2)$, $n \in \mathbb{N}$, $z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 20 ($Exp_{A,n,z}^{CPA}(b)$ **)**

$$(e,d) \leftarrow G(1^n)$$

$$(m_0, m_1, s) \leftarrow \mathsf{A}_1^{E_e(\cdot)}(1^n, z)$$

3
$$c \leftarrow \mathsf{E}_e(m_b)$$

Output
$$A_2^{E_e(\cdot)}(1^n, s, c)$$

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2)$, $n \in \mathbb{N}$, $z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 20 ($Exp_{A,n,z}^{CPA}(b)$ **)**

$$(e,d) \leftarrow G(1^n)$$

$$(m_0, m_1, s) \leftarrow \mathsf{A}_1^{E_e(\cdot)}(1^n, z)$$

3
$$c \leftarrow \mathsf{E}_e(m_b)$$

• Output
$$A_2^{E_e(\cdot)}(1^n, s, c)$$

Definition 21 (private key CPA)

 $\begin{array}{l} (G, E, D) \text{ has indistinguishable encryptions in the private-key} \\ \text{model under CPA attack, if } \forall \ \texttt{PPT} \ A_1, A_2, \ \texttt{and poly-bounded} \\ \{z_n\}_{n \in \mathbb{N}} \\ |\texttt{Pr}[\texttt{Exp}_{A,n,z_n}^{\texttt{CPA}}(0) = 1] - \texttt{Pr}[\texttt{Exp}_{A,n,z_n}^{\texttt{CPA}}(1) = 1]| = \texttt{neg}(n) \end{array}$

public-key variant...

- public-key variant...
- The scheme from Construction 16 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)

- public-key variant...
- The scheme from Construction 16 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction 18 has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)

- public-key variant...
- The scheme from Construction 16 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction 18 has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)
- In both cases, definitions are *not* equivalent

CCA Security

Experiment 22 ($Exp_{A,n,z}^{CCA1}(b)$ **)**

1
$$(e, d) \leftarrow G(1^n)$$

2 $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
3 $c \leftarrow E_e(m_b)$
4 Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CCA Security

Experiment 22 ($Exp_{A,n,z}^{CCA1}(b)$ **)**

1
$$(e, d) \leftarrow G(1^n)$$

2 $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
3 $c \leftarrow E_e(m_b)$
4 Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Experiment 23 ($Exp_{A,n,z_n}^{CCA2}(b)$ **)**

●
$$(e, d) \leftarrow G(1^n)$$

● $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$

3
$$c \leftarrow \mathsf{E}_e(x_b)$$

• Output
$$A_2^{E_e(\cdot),D_d^{\neg c}(\cdot)}(1^n, s, c)$$

Definition 24 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if $\forall PPT A_1, A_2$, and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$: $|Pr[Exp_{A,n,z_n}^x(0) = 1] - Pr[Exp_{A,n,z_n}^x(1) = 1]| = neg(n)$

Definition 24 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if $\forall PPT A_1, A_2$, and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$: $|Pr[Exp_{A,n,z_n}^x(0) = 1] - Pr[Exp_{A,n,z_n}^x(1) = 1]| = neg(n)$

• The public key definition is analogous

Is the scheme from Construction 16 private-key CCA1 secure?

- Is the scheme from Construction 16 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 25

- $G'(1^n)$: Output ($e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n)$).^{*a*}
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- D_{e,k}(c, t): if Vrfy_k(c, t) = 1, output D_e(c). Otherwise, output ⊥

^aWe assume for simplicity that the encryption and decryption keys are the same.

- Is the scheme from Construction 16 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 25

- $G'(1^n)$: Output ($e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n)$).^{*a*}
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- D_{e,k}(c, t): if Vrfy_k(c, t) = 1, output D_e(c). Otherwise, output ⊥

^aWe assume for simplicity that the encryption and decryption keys are the same.

Private-key CCA2

Theorem 26

Construction 25 is a private-key CCA2-secure encryption scheme.

Private-key CCA2

Theorem 26

Construction 25 is a private-key CCA2-secure encryption scheme.

Proof: ?

Constructions

Public-key CCA1

Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NIZK for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) : \exists (m, z_0, z_1) \ s.t. \ c_0 = E_{pk_0}(m, z_0) \land c_1 = E_{pk_1}(m, z_1)\}$

Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NIZK for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1): \exists (m, z_0, z_1) \ s.t. \ c_0 = \mathsf{E}_{pk_0}(m, z_0) \land c_1 = \mathsf{E}_{pk_1}(m, z_1)\}$

Construction 27 (The Naor-Yung Paradigm)

• G'(1ⁿ): **①** For *i* ∈ {0, 1}: set $(sk_i, pk_i) \leftarrow G(1^n)$. 2 Let $r \leftarrow \{0, 1\}^{\ell(n)}$, and output $pk' = (pk_0, pk_1, r)$ and $sk' = (pk', sk_0, sk_1)$ • $E'_{nk'}(m)$: • For $i \in \{0, 1\}$: $c_i = E_{pk_i}(m, z_i)$, where z_i is a uniformly chosen string of the right length **2** $\pi \leftarrow \mathsf{P}((c_0, c_1, pk_0, pk_1), (m, z_0, z_1), r)$ 3 Output (c_0, c_1, π) . • $D'_{sk'}(c_0, c_1, \pi)$: If $V((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, return $D_{sk_0}(c_0)$. Otherwise, return \perp

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least *n*.
- *ℓ* is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" *n*.

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least *n*.
- *ℓ* is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" *n*.

Is the scheme CCA1 secure?

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least *n*.
- *ℓ* is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" *n*.

Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 28

Assuming that (P,V) is adaptive secure, then Construction 27 is a public-key CCA1 secure encryption scheme.

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least *n*.
- *ℓ* is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" *n*.

Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 28

Assuming that (P,V) is adaptive secure, then Construction 27 is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A' for the CCA1 security of (G', E', D'), we use it to construct an attacker A on the CPA security of (G, E, D). Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Algorithm 29 (A)

Input: (1^{*n*}, *pk*)

- let $j \leftarrow \{0, 1\}$, $pk_{1-j} = pk$, $(pk_j, sk_j) \leftarrow G(1^n)$ and $(r, s) \leftarrow S_1(1^n)$
- S Emulate $A'(1^n, pk' = (pk_0, pk_1, r))$ as follows:
- On query (c_0, c_1, π) of A' to D': If V $((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, answer D_{*skj*} (c_j) . Otherwise, answer \bot .
- Output the same pair (m_0, m_1) as A' does
- On challenge c (= $E_{pk}(m_b)$):
 - Set $c_{1-j} = c$, $a \leftarrow \{0, 1\}$, $c_j = E_{pk_j}(m_a)$, and $\pi \leftarrow S_2((c_0, c_1, pk_0, pk_1), r, s)$
 - Send $\boldsymbol{c}' = (\boldsymbol{c}_0, \boldsymbol{c}_1, \pi)$ to A'
- Output the same value that A' does

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of $(\mathsf{P},\mathsf{V}),$ yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V) , yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Hence, only negligible information leaks about *j*.

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of $(\mathsf{P},\mathsf{V}),$ yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Hence, only negligible information leaks about *j*. Let A'(1^{*n*}, a^* , b^*) be the output of A'(1^{*n*}) in the emulation induced by A, where $a = a^*$ and $b = b^*$.

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of $(\mathsf{P},\mathsf{V}),$ yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Hence, only negligible information leaks about *j*. Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

1
$$A'(1^n, 0, 1) \equiv A'(1^n, 1, 0)$$

Claim 30

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of $(\mathsf{P},\mathsf{V}),$ yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Hence, only negligible information leaks about *j*. Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

1
$$A'(1^n, 0, 1) \equiv A'(1^n, 1, 0)$$

2 The adaptive zero-knowledge of (P, V) yields that $|\Pr[A'(1^n, 1, 1) = 1] - \Pr[A'(1^n, 0, 0) = 1]| \ge \delta(n) - \operatorname{neg}(n)$

$$\begin{aligned} & \Pr[\mathsf{A}(1) = 1] - \Pr[\mathsf{A}(0) = 1]| \\ &= \big| \frac{1}{2} (\Pr[\mathsf{A}'(0, 1) = 1] + \Pr[\mathsf{A}'(1, 1) = 1]) \\ &- \frac{1}{2} (\Pr[\mathsf{A}'(0, 0) = 1] + \Pr[\mathsf{A}'(1, 0) = 1]) \big| \end{aligned}$$

$$\begin{aligned} &\mathsf{Pr}[\mathsf{A}(1) = 1] - \mathsf{Pr}[\mathsf{A}(0) = 1]| \\ &= \Big| \frac{1}{2} (\mathsf{Pr}[\mathsf{A}'(0,1) = 1] + \mathsf{Pr}[\mathsf{A}'(1,1) = 1]) \\ &\quad - \frac{1}{2} (\mathsf{Pr}[\mathsf{A}'(0,0) = 1] + \mathsf{Pr}[\mathsf{A}'(1,0) = 1]) \Big| \\ &\geq \frac{1}{2} \Big| \mathsf{Pr}[\mathsf{A}'(1,1) = 1] - \mathsf{Pr}[\mathsf{A}'(0,0) = 1] \Big| \\ &\quad - \frac{1}{2} \Big| \mathsf{Pr}[\mathsf{A}'(1,0) = 1] - \mathsf{Pr}[\mathsf{A}'(0,1) = 1] \Big| \end{aligned}$$

$$\begin{aligned} |\Pr[\mathsf{A}(1) = 1] - \Pr[\mathsf{A}(0) = 1]| \\ &= \left|\frac{1}{2}(\Pr[\mathsf{A}'(0, 1) = 1] + \Pr[\mathsf{A}'(1, 1) = 1])\right| \\ &- \frac{1}{2}(\Pr[\mathsf{A}'(0, 0) = 1] + \Pr[\mathsf{A}'(1, 0) = 1])| \\ &\geq \frac{1}{2}\left|\Pr[\mathsf{A}'(1, 1) = 1] - \Pr[\mathsf{A}'(0, 0) = 1]\right| \\ &- \frac{1}{2}\left|\Pr[\mathsf{A}'(1, 0) = 1] - \Pr[\mathsf{A}'(0, 1) = 1]\right| \\ &\geq (\delta(n) - \operatorname{neg}(n))/2 \end{aligned}$$

Definitions

Constructions

Active Adversaries

Public-key CCA1

Public-key CCA2

Is Construction 27 CCA2 secure?

Public-key CCA2

- Is Construction 27 CCA2 secure?
- **Problem:** Soundness might not hold with respect to the simulated CRS, after seeing a proof for an *invalid* statement

Public-key CCA2

- Is Construction 27 CCA2 secure?
- **Problem:** Soundness might not hold with respect to the simulated CRS, after seeing a proof for an *invalid* statement
- Solution: use simulation sound NIZK