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Correctness

Definition 1 (encryption scheme)

A trippet of PPT’s (G,E,D) such that
1 G(1n) outputs a key (e,d) ∈ {0,1}∗ × {0,1}∗
2 E(e,m) outputs a string in c ∈ {0,1}∗
3 D(d , c) outputs m ∈ {0,1}∗

Correctness: D(d ,E(e,m)) = m, for any (e,d) ∈ Supp(G(1n))
and m ∈ {0,1}∗

e – encryption key, d – decryption key
m – plaintext, c = E(e,m) – ciphertext
Ee(m) ≡ E(e,m) and Dd(c) ≡ D(d , c),

public/private key
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Security

What would we like to achieve?

Attempt: for any m ∈ {0,1}∗:

(m,EG(1n)1
(m)) ≡ (m,U`(|m|))

Shannon – only for m with |m| ≤ |G(1n)1|
Other concerns, e.g., multiple encryptions, active adversary
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Semantic Security

1 Ciphertext reveal “no information" about the plaintext

2 Formulate via the simulation paradigm
3 Cannot hide the message length
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Semantic Security

Semantic security – private-key model

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G,E,D) is semantically secure in the
private-key model, if for any PPT A, ∃ PPT A′ s.t. ∀ poly-bounded
dist. ensembleM = {Mn}n∈N and poly-bounded functions
h, f : {0,1}∗ 7→ {0,1}∗∣∣Prm←Mn,e←G(1n)1

[A(1n,1|m|,h(1n,m),Ee(m)) = f (1n,m)]

−Prm←Mn [A
′(1n,1|m|,h(1n,m)) = f (1n,m)]

∣∣= neg(n)

poly-bounded? for simplicity we assume polynomial length
1n and 1|m| can be omitted
Non-uniform definition
Reflection to ZK
public-key variant – A gets e
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The encryption of two strings is indistinguishable

Less intuitive than semantic security, but easier to work
with
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Theorem 4

An encryption scheme (G,E,D) is semantically secure iff is has
indistinguishable encryptions.

We prove the private key case
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Equivalence

Indistinguishability =⇒ Semantic Security

FixM, A, f and h, be as in Definition 2. We construct A′ as

Algorithm 5 (A′)

Input: 1n, 1|m| and h(m)

1 e← G(1n)1

2 c = Ee(1|m|)
3 Output A(1n,1|m|,h(m), c)

Claim 6

A′ is a good simulator for A (according to Definition 2)
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Equivalence

Proving Claim 6

For n ∈ N, let

δ(n) :=
∣∣Prm←Mn,e←G(1n)1

[A(1n,1|m|,h(1n,m),Ee(m)) = f (1n,m)]

−Prm←Mn [A
′(1n,1|m|,h(1n,m)) = f (1n,m)]

∣∣

Claim 7
For every n ∈ N, exists xn ∈ Supp(Mn) with

δ(n) ≤
∣∣Pre←G(1n)1

[A(1n,1|xn|,h(1n, xn),Ee(xn)) = f (1n, xn)]

−Pr[A′(1n,1|xn|,h(1n, xn)) = f (1n, xn)]
∣∣

Proof: Write the lhs and rhs terms in the definition of δ(n) as
sums over the different choices of m ∈ Supp(Mn), and use
|a + b| ≤ |a|+ |b|
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Equivalence

Assume ∃ an infinite I ⊆ N and p ∈ poly s.t. δ(n) > 1/p(n) for
every n ∈ I.

The following algorithm contradicts the indistinguishability of
(G,E,D) with respect to {(xn, yn = 1|xn|)}n∈N and
{zn = (1n,1|xn|,h(1n, xn), f (1n, xn))}n∈N.

Algorithm 8 (B)

Input: zn = (1n,1|xn|,h(1n, xn), f (1n, xn)), c
Output 1 iff A(1n,1|xn|,h(xn), c) = f (1n, xn)
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Equivalence

Semantic Security =⇒ Indistinguishability

Assume ∃ PPT B, {xn, yn ∈ {0,1}`(n)}n∈N and a {zn}n∈N, such
that (wlg) for infinitely many n’s: (1)

Pre←G(1n)1
[B(zn,Ee(xn))= 1]−Pre←G(1n)1

[B(zn,Ee(yn))= 1] ≥ 1
p(n)

LetMn be xn wp 1
2 and yn otherwise.

Let f (1n, xn) = 1, f (1n, yn) = 0 and h(1n, ·) = zn).
Define A(1n,1`(n), zn, c) to return B(zn, c).

(2)

Prm←Mn,e←G(1n)1
[A(1n,1|m|,h(1n,m),Ee(m))= f (1n,m)] ≥ 1

2
+

1
p(n)

where for any A′ (3)

Prm←Mn,e←G(1n)1
[A(1n,1|m|,h(1n,m),Ee(m)) = f (1n,m)] ≤ 1

2
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Multiple Encryptions

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions –
private-key model)
An encryption scheme (G,E,D) has indistinguishable
encryptions for multiple messages in the private-key model, if
for any p, `, t ∈ poly,
{xn,1, . . . xn,t(n), yn,1, . . . , yn,t(n) ∈ {0,1}`(n)}n∈N,
{zn ∈ {0,1}p(n)}n∈N and polynomial-time B,∣∣Pre←G(1n)1

[B(zn,Ee(xn,1), . . .Ee(xn,t(n))) = 1]

−Pre←G(1n)1
[B(zn,Ee(yn,1), . . .Ee(yn,t(n))) = 1

∣∣= neg(n)

Extensions:
Different length messages
Semantic security version
Public-key definition
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for any p, `, t ∈ poly,
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Multiple Encryption in the Public-Key Model

Theorem 10
A public-key encryption scheme has indistinguishable
encryptions for multiple messages, iff it has indistinguishable
encryptions for a single message.

Proof: Assume (G,E,D) is public-key secure for a single
message and not for multiple messages with respect to B,
{x1,t(n), . . . xn,t(n), yn,1, . . . , yn,t(n) ∈ {0,1}`(n)}n∈N,
{zn ∈ {0,1}p(n)}n∈N.
It follows that for some function i(n) ∈ [t(n)]∣∣Pr[B(1n,e,Ee(xn,1), . . . ,Ee(xn,i−1),Ee(yn,i) . . . ,Ee(yn,t(n))) = 1]

−Pr[B(1n,e,Ee(xn,1), . . . ,Ee(xn,i),Ee(yn,i+1) . . . ,Ee(yn,t(n))) = 1]
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> neg(n)

where in both cases e← G(1n)1
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Multiple Encryptions

Algorithm 11 (B′)
Input: 1n, zn = (i(n), x1,t(n), . . . xn,t(n), yn,1, . . . , yn,t(n), e ,c
Return B(c,Ee(xn,1), . . . ,Ee(xn,i−1), c,Ee(yn,i+1) . . . ,Ee(yn,t(n)))

B′ is critically using the public key
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Multiple Encryptions

Multiple Encryption in the Private-Key Model

Fact 12
Assuming (non uniform) OWFs exists, there exists an
encryption scheme that has private-key indistinguishable
encryptions for a single messages, but not for multiple
messages

Proof: Let g : {0,1}n 7→ {0,1}n+1 be a (non-uniform) PRG, and
for i ∈ N let g i be its ”iterated extension" to output of length i
(see Lecture 2, Construction 15).

Construction 13
G(1n) outputs e← {0,1}n,
Ee(m) outputs g|m|(e)⊕m
De(c) outputs g|c|(e)⊕ c
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Multiple Encryptions

Claim 14
(G,E,D) has private-key indistinguishable encryptions for a
single message

Proof:

Assume not, and let B, {xn, yn ∈ {0,1}`(n)}n∈N and
{zn ∈ {0,1}p(n)}n∈N be the triplet that realizes it. Wlog,∣∣Pr[B(zn,g|xn|(Un)⊕ xn) = 1]− Pr[B(zn,U|xn| ⊕ xn) = 1]

∣∣> neg(n)
(4)

Hence, B implies a (non-uniform) distinguisher for g

Claim 15
(G,E,D) does not have a private-key indistinguishable
encryptions for multiple messages

Proof: Take xn,1 = xn,2, yn,1 6= yn,2 and D(c1, c2) outputs 1 iff
c1 = c2
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Private key indistinguishable encryptions for multiple messages

Suffice to encrypt messages of some fixed length (here the
length is n).

Let F be a (non-uniform) length preserving PRF

Construction 16

G(1n): output e← Fn,
Ee(m): choose r ← {0,1}n and output (r ,e(r)⊕m)

De(r , c): output e(r)⊕ c

Claim 17
(G,E,D) has private-key indistinguishable encryptions for a
multiple messages

Proof:
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Public-key indistinguishable encryptions for multiple messages

Let (G, f , Inv) be a (non-uniform) TDP, and let b be an hardcore
predicate for f .

Construction 18 (bit encryption)

G(1n): output (e,d)← G(1n)

Ee(m): choose r ← {0,1}n and output
(y = fe(r), c = b(r)⊕m)

Dd(y , c): output b(Invd(y))⊕ c

Claim 19
(G,E,D) has public-key indistinguishable encryptions for a
multiple messages

We believe that public-key encryptions schemes are “more
complex" than private-key ones
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Active Adversaries
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Active Adversaries

Chosen plaintext attack (CPA):
The adversary can ask for encryption and choose the
messages to distinguish accordingly

Chosen ciphertext attack (CPA):
The adversary can also ask for decryptions of certain
messages

In the public-key settings, the adversary is also given the
public key
We focus on indistinguishability, but each of the above
definitions has an equivalent semantic security variant.
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CPA Security

Let (G,E,D) be an encryption scheme. For a pair of algorithms
A = (A1,A2), n ∈ N, z ∈ {0,1}∗ and b ∈ {0,1}, let:

Experiment 20 (ExpCPA
A,n,z(b))

1 (e,d)← G(1n)

2 (m0,m1, s)← AEe(·)
1 (1n, z)

3 c ← Ee(mb)

4 Output AEe(·)
2 (1n, s, c)

Definition 21 (private key CPA)
(G,E,D) has indistinguishable encryptions in the private-key
model under CPA attack, if ∀ PPT A1,A2, and poly-bounded
{zn}n∈N:

|Pr[ExpCPA
A,n,zn

(0) = 1]− Pr[ExpCPA
A,n,zn

(1) = 1]| = neg(n)
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public-key variant...

The scheme from Construction 16 has indistinguishable
encryptions in the private-key model under CPA attack(for
short, private-key CPA secure)
The scheme from Construction 18 has indistinguishable
encryptions in the public-key model (for short, public-key
CPA secure)
In both cases, definitions are not equivalent
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CCA Security

Experiment 22 (ExpCCA1
A,n,z (b))

1 (e,d)← G(1n)

2 (m0,m1, s)← AEe(·),Dd (·)
1 (1n, z)

3 c ← Ee(mb)

4 Output AEe(·)
2 (1n, s, c)

Experiment 23 (ExpCCA2
A,n,zn

(b))

1 (e,d)← G(1n)

2 (x0, x1, s)← AEe(·),Dd (·)
1 (1n, z)

3 c ← Ee(xb)

4 Output A
Ee(·),D¬c

d (·)
2 (1n, s, c)
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Definition 24 (private key CCA1/CCA2)

(G,E,D) has indistinguishable encryptions in the private-key
model under x ∈ {CCA1,CCA2} attack, if ∀ PPT A1,A2, and
poly-bounded {zn}n∈N:

|Pr[Expx
A,n,zn

(0) = 1]− Pr[Expx
A,n,zn

(1) = 1]| = neg(n)

The public key definition is analogous
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Private-key CCA2

Private-key CCA2

Is the scheme from Construction 16 private-key CCA1
secure?

CCA2 secure?

Let (G,E,D) be a private key CPA scheme, and let
(GenM ,Mac,Vrfy) be an existential unforgeable strong MAC.

Construction 25

G′(1n): Output (e← GE(1n), k ← GenM(1n)).a

E′d ,k (m): let c = Ee(m) and output (c, t = Mack (c))
De,k (c, t): if Vrfyk (c, t) = 1, output De(c). Otherwise,
output ⊥

aWe assume for simplicity that the encryption and decryption keys are the
same.
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scheme.
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Let (G,E,D) be a public-key CPA scheme and let (P,V) be a
NIZK for L = {(c0, c1,pk0,pk1) : ∃(m, z0, z1) s.t . c0 =
Epk0(m, z0) ∧ c1 = Epk1(m, z1)}
Construction 27 (The Naor-Yung Paradigm)

G′(1n):
1 For i ∈ {0,1}: set (ski ,pki)← G(1n).
2 Let r ← {0,1}`(n), and output pk ′ = (pk0,pk1, r) and

sk ′ = (pk ′, sk0, sk1)

E′pk ′(m):
1 For i ∈ {0,1}: ci = Epki (m, zi), where zi is a uniformly

chosen string of the right length
2 π ← P((c0, c1,pk0,pk1), (m, z0, z1), r)
3 Output (c0, c1, π).

D′sk ′(c0, c1, π): If V((c0, c1,pk0,pk1), π, r) = 1, return
Dsk0(c0). Otherwise, return ⊥
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Public-key CCA1

Omitted details:
We assume for simplicity that the encryption key output by
G(1n) is of length at least n.
` is an arbitrary polynomial, and determines the maximum
message length to encrypt using ”security parameter" n.

Is the scheme CCA1 secure? We need the NIZK to be
“adaptive secure".

Theorem 28
Assuming that (P,V) is adaptive secure, then Construction 27
is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A′ for the CCA1 security of (G′,E′,D′),
we use it to construct an attacker A on the CPA security of
(G,E,D).
Let S = (S1,S2) be the (adaptive) simulator for (P,V,L)
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Algorithm 29 (A)

Input: (1n,pk)
1 let j ← {0,1}, pk1−j = pk , (pkj , skj)← G(1n) and

(r , s)← S1(1n)

2 Emulate A′(1n,pk ′ = (pk0,pk1, r)) as follows:
3 On query (c0, c1, π) of A′ to D′:

If V((c0, c1,pk0,pk1), π, r) = 1, answer Dskj (cj).
Otherwise, answer ⊥.

4 Output the same pair (m0,m1) as A′ does
5 On challenge c ( = Epk (mb)):

Set c1−j = c, a← {0,1}, cj = Epkj (ma), and
π ← S2((c0, c1,pk0,pk1), r , s)
Send c′ = (c0, c1, π) to A′

6 Output the same value that A′ does
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Public-key CCA1

Claim 30
Assume that A′ breaks the CCA1 security of (G′,E′,D′) with
probability δ(n), then A breaks the CPA security of (G,E,D)
with probability (δ(n)− neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of
(P,V), yields that

Pr[A′ “makes" A(1n) decrypt an invalid cipher] = neg(n) (5)

Hence, only negligible information leaks about j .
Let A′(1n,a∗,b∗) be the output of A′(1n) in the emulation
induced by A, where a = a∗ and b = b∗. It holds that

1 A′(1n,0,1) ≡ A′(1n,1,0)
2 The adaptive zero-knowledge of (P,V) yields that
|Pr[A′(1n,1,1) = 1]− Pr[A′(1n,0,0) = 1]| ≥ δ(n)− neg(n)
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Let A(b) be the outputs of A when the challenge is b.

|Pr[A(1) = 1]− Pr[A(0) = 1]|

=
∣∣1
2
(Pr[A′(0,1) = 1] + Pr[A′(1,1) = 1])

−1
2
(Pr[A′(0,0) = 1] + Pr[A′(1,0) = 1])

∣∣
≥ 1

2
∣∣Pr[A′(1,1) = 1]− Pr[A′(0,0) = 1]

∣∣
−1

2
∣∣Pr[A′(1,0) = 1]− Pr[A′(0,1) = 1]

∣∣
≥ (δ(n)− neg(n))/2
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Is Construction 27 CCA2 secure?

Problem: Soundness might not hold with respect to the
simulated CRS, after seeing a proof for an invalid
statement
Solution: use simulation sound NIZK
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