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Definition 1 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is an
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Theorem 2 (Goldreich-Levin)
Let f : {0,1}n 7→ {0,1}n be a OWF, and define
g : {0,1}n × {0,1}n 7→ {0,1}n × {0,1}n as g(x , r) = f (x), r .
Then b(x , r) = 〈x , r〉2, is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.
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The Information Theoretic Case
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Definition 3 (min-entropy)

The min entropy of a random variable X , is defined

H∞(X ) := min
y∈Supp(X)

log
1

PrX [y ]
.

Examples
X is uniform over a set of size 2k

(X | f (X ) = y), where f : {0,1}n 7→ {0,1}n is 2k to 1 and X
is uniform over {0,1}n
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Pairwise independent hashing

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family H from {0,1}n to {0,1}m is pairwise
independent, if for every x 6= x ′ ∈ {0,1}n and y , y ′ ∈ {0,1}m, it
holds that Prh←H[h(x) = y ∧ h(x ′) = y ′)] = 2−2m.

Lemma 5 (leftover hash lemma)

Let X be a random variable over {0,1}n with H∞(X ) ≥ k and
let H be a family of pairwise independent hash functions from
{0,1}n to {0,1}m, then

SD((h,h(x))h←H,x←X , (h, y)h←H,y←{0,1}m ) ≤ 2(m−k−2))/2.

* We typically simply write SD((H,H(X )), (H,Um)), where H is
uniformly distributed over H.
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efficient function families

Definition 6 (efficient function family)

An ensemble of function families F = {Fn}n∈N is efficient, if the
following hold:
Samplable. F is samplable in polynomial-time: there exists a

PPT that given 1n, outputs (the description of) a
uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that
given x ∈ {0,1}n and (a description of) f ∈ Fn,
outputs f (x).
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hardcore predicate for regular functions

hardcore predicate for regular OWF

Lemma 7

Let f : {0,1}n 7→ {0,1}n be a d(n) ∈ 2ω(log n) regular function
and let H = {Hn} be an efficient family of Boolean pairwise
independent hash functions over {0,1}n. Define
g : {0,1}n ×Hn 7→ {0,1}n ×Hn as

g(x ,h) = (f (x),h),

then b(x ,h) = h(x) is an hardcore predicate of g.

How does it relate to the computational case?
Proof: We prove the claim by showing that

Claim 8

SD ((f (Un),H,H(Un)), (f (Un),H,U1)) = neg(n), where the rv
H = H(n) is uniformly distributed over Hn.

Does this conclude the proof?
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hardcore predicate for regular functions

Proving Claim 8

Proof: For y ∈ f ({0,1}n) := {f (x) : x ∈ {0,1}n}, let the rv Xy be
uniformly distributed over f−1(y) := {x ∈ {0,1}n : f (x) = y}.

SD((f (Un),H,H(Un)), (f (Un),H,U1))

=
∑

y∈f ({0,1}n)

Pr[f (Un) = y ] · SD
(
(f (Un),H,H(Un) | f (Un) = y)

, (f (Un),H,U1 | f (Un) = y)
)

=
∑

y∈f ({0,1}n)

Pr[f (Un) = y ] · SD ((y ,H,H(Xy )), (y ,H,U1))

≤ max
y∈f ({0,1}n)

SD((y ,H,H(Xy )), (y ,H,U1))

≤ max
y∈f ({0,1}n)

SD((H,H(Xy )), (H,U1))
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hardcore predicate for regular functions

Proving Claim 8 cont.

Since H∞(Xy ) = log(d(n)) for any y ∈ f ({0,1}n),

The leftover hash lemma yields that

SD((H,H(Xy )), (H,U1)) ≤ 2(1−H∞(Xy )−2))/2

= 2(1−log(d(n)))/2 = neg(n).
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hardcore predicate for regular functions

Further remarks

Remark 9
We can output Θ(log d(n)) bits,
g and b are not defined over all input length.
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Proving Goldreich-Levin Theorem

Theorem 10 (Goldreich-Levin)
Let f : {0,1}n 7→ {0,1}n be a OWF, and define
g : {0,1}n × {0,1}n 7→ {0,1}n × {0,1}n as g(x , r) = f (x), r .
Then b(x , r) = 〈x , r〉2, is an hardcore predicate of g.

Note that if b(x , r) is (almost) a family of pairwise independent
hash functions.

Proof: Assume ∃ PPT A, p ∈ poly and infinite set I ⊆ N with
Pr[A(g(Un,Rn)) = b(Un,Rn)] ≥ 1

2
+

1
p(n)

, (1)

for any n ∈ I, where Un and Rn are uniformly (and
independently) distributed over {0,1}n.
We show ∃ PPT B and p′ ∈ poly with

Pry←f (Un)[B(y) ∈ f−1(y) ≥ 1
p′(n)

, (2)

for every n ∈ I. In the following fix n ∈ I.
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Focusing on a good set

Claim 11
There exists a set S ⊆ {0,1}n with

1 |S|
2n ≥ 1

2p(n) , and

2 α(x) := Pr[A(f (x),Rn) = b(x ,Rn)] ≥ 1
2 + 1

2p(n) , ∀x ∈ S.

Proof: Let S := {x ∈ {0,1}n : α(x) ≥ 1
2 + 1

2p(n)}. It follows that

Pr[A(g(Un,Rn)) = b(Un,Rn)] ≤ Pr[Un /∈ S] ·
(

1
2 + 1

2p(n)

)
+Pr[Un ∈ S]

≤
(

1
2 + 1

2p(n)

)
+ Pr[Un ∈ S]

We will present q ∈ poly and a PPT B such that

Pr[B(y = f (x)) ∈ f−1(y) ≥ 1
q(n)

, (3)

for every x ∈ S. Fix x ∈ S.
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Perfect case

The perfect case α(x) = 1

For every i ∈ [n], it holds that

A(f (x),ei) = b(x ,ei),

where ei = (0, . . . ,0︸ ︷︷ ︸
i−1

,1,0, . . . ,0︸ ︷︷ ︸
n−i

).

Hence, xi = 〈x ,ei〉2 = A(f (x),ei)

We let B(f (x)) = (A(f (x),e1), . . . ,A(f (x),en))
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Easy case

Easy case: α(x) ≥ 1− neg(n)

Fact 12
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The Information Theoretic Case The Computational Case

Intermediate case

Intermediate case: α(x) ≥ 3
4 + 1

q(n)

For any i ∈ [n], it holds that

Pr[A(f (x),Rn)⊕ A(f (x),Rn ⊕ ei) = xi ] (4)
≥ Pr[A(f (x),Rn) = b(x ,Rn) ∧ A(f (x),Rn ⊕ ei) = b(x ,Rn ⊕ ei)]

≥ 1
2

+
2

q(n)

Algorithm 13 (B)
Input: f (x) ∈ {0,1}n

1 For every i ∈ [n]

Sample r1, . . . , r v ∈ {0,1}n uniformly at random
Let mi = majj∈[v ]{(A(f (x), r j )⊕ A(f (x), r j ⊕ ei )}

2 Output (m1, . . . ,mn)
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The Information Theoretic Case The Computational Case

Intermediate case

B’s success provability

The following holds for “large enough" v = v(n).

Claim 14
For every i ∈ [n], it holds that Pr[mi = xi ] ≥ 1− neg(n).

Proof: For j ∈ [v ], let the indicator rv W j be 1, iif
A(f (x), r j)⊕ A(f (x), r j ⊕ ei) = xi .
We want to lowerbound Pr

[∑v
j=1 W j > v

2

]
.

The W j are iids and E[W j ] ≥ 1
2 + 2

q(n) , for every j ∈ [v ]

Lemma 15 (Hoeffding’s inequality)

Let X 1, . . . ,X v be iid over [0,1] with expectation µ. Then,

Pr
[
|
∑v

j=i X j

v − µ| ≥ ε
]
≤ 2 · exp(−2ε2v) for every ε > 0.

We complete the proof taking X j = W j , ε = 1/4q(n) and
v ∈ ω(log(n) · q(n)2).
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The Information Theoretic Case The Computational Case

Actual case

The actual case: α(x) ≥ 1
2 + 1

q(n)

What goes wrong?

Idea: guess the values of {b(x , r1), . . . ,b(x , r v )}
(instead of calling {A(f (x), r1), . . . ,A(f (x), r v )})
Problem: negligible success probability
Solution: choose the samples in a correlated manner
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The Information Theoretic Case The Computational Case

Actual case

Algorithm B

Fix ` = `(n) (will be O(log n)) and set v = 2` − 1.

We let L ⊆ [`] stands for non-empty subset.

Algorithm 16 (B)
Input: f (x) ∈ {0,1}n

1 Sample uniformly (and independently) t1, . . . , t` ∈ {0,1}n
2 For all L ⊆ [`], set rL =

⊕
i∈L t i

3 Guess {b(x , t i)}, and compute {b(x , rL)} (how?)
4 For all i ∈ [n], let

mi = majL⊆{0,1}n{A(f (x), rL ⊕ ei)⊕ b(x , rL)}
5 Output (m1, . . . ,mn)

Fix i ∈ [n], and let WL be 1, iff A(f (x), rL ⊕ ei)⊕ b(x , rL) = xi .
We want to lowerbound Pr[

∑
L⊆[`] W

L > v
2 ]

Problem: the WL’s are dependent!
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The Information Theoretic Case The Computational Case

Actual case

Analyzing B’s success probability

1 Let T 1, . . . ,T ` be iid over {0,1}n.
2 For every L ⊆ [`], let RL =

⊕
i∈L T i .

Fact 17

1 ∀L ⊆ [`], RL is uniformly distributed over {0,1}n
2 ∀w , y ∈ {0,1}n and ∀L 6= L′ ⊆ [`], it holds that

Pr[RL = w ∧ RL
′

= y ] = Pr[RL = w ] · Pr[RL
′

= y ]

That is, the RL’s are pairwise independent.
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The Information Theoretic Case The Computational Case

Actual case

Proving Fact 17(2)

Assume wlg. that 1 ∈ (L′ \ L).

Pr[RL = w ∧ RL
′

= y ]

=
∑

(t2,...,t`)∈{0,1}(`−1)n

Pr[(T 2, . . . ,T `) = (t2, . . . , t`)] ·

Pr[RL = w ∧ RL
′

= y | (T 2, . . . ,T `) = (t2, . . . , t`)]

=
∑

(t2,...,t`) : (
⊕

i∈L t i )=w

Pr[(T 2, . . . ,T `) = (t2, . . . , t`)]

·Pr[RL = w ∧ RL
′

= y | (T 2, . . . ,T `) = (t2, . . . , t`)]

=
∑

(t2,...,t`) : (
⊕

i∈L t i )=w

Pr[(T 2, . . . ,T `) = (t2, . . . , t`)] · 2−n

= 2−n · 2−n = Pr[RL = w ] · Pr[RL
′

= y ]
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= 2−n · 2−n = Pr[RL = w ] · Pr[RL
′

= y ]
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Pairwise independence variables

Definition 18 (pairwise independent random variables)

A sequence of random variables X 1, . . . ,X v is pairwise
independent, if ∀i 6= j ∈ [v ] and ∀a,b, it holds that

Pr[X i = a ∧ X j = b] = Pr[X i = a] · Pr[X j = b]

For every L 6= L′ ⊆ [`], the rvs RL and RL
′

are pairwise
independent, and therefore also WL and WL′ (why?).

Lemma 19 (Chebyshev’s inequality)

Let X 1, . . . ,X v be pairwise-independent random variables with
expectation µ and variance σ2. Then, for every ε > 0,

Pr

[∣∣∣∣
∑v

j=1 X j

v
− µ

∣∣∣∣ ≥ ε
]
≤ σ2

ε2v
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Actual case

B’s success provability cont

Assuming that B always guesses {b(x , t i)} correctly, then for
every L ⊆ [`]

E[WL] ≥ 1
2 + 1

q(n)

Var(WL) := E[WL]2 − E[(WL)2] ≤ 1

Taking ε = 1/2q(n) and v = 2n/ε2 (i.e., ` =
⌈
log(2n/ε2)

⌉
),

yields that

Pr[mi = xi ] = Pr

[∑
L⊆[`] W

L

v
>

1
2

]
≥ 1− 1

2n
(5)

and by a union bound, B outputs x with probability 1
2 .

Taking the guessing into account, yields that B outputs x with
probability at least 2−`−1 ∈ Ω(n/q(n)2).
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Reflections

Hardcore functions. Similar ideas allows to output log n
“pseudorandom bits"

Alternative proof for the LHL. Let X be a rv with over {0,1}n
with H∞(X ) ≥ t , and assume that
SD((Rn, 〈Rn,X 〉2), (Rn,U1)) > α = 2−c·t for some
universal c > 0. Hence

1 ∃ (a possibly inefficient) algorithm D that
distinguishes (Rn, 〈Rn,X 〉2) from (Rn,U1) with
advantage α

2 ∃A that predicts 〈Rn,X 〉2 given Rn with prob
1
2 + α

3 (by GL) ∃B that guesses X “from nothing",
with prob αO(1) > 2−t
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Reflections cont.

List decoding. An efficient encoding C : {0,1}n 7→ {0,1}m,
and a decoder D. Such that the following holds for
any x ∈ {0,1}n and c of hamming distance 1

2 − δ
from C(x):
D(c, δ) outputs a list of size at most poly(1/δ) that
whp. contains x

The code we used here is known as the
Hadamard code

LPN - learning parity with noise. Find x given polynomially
many samples of 〈x ,Rn〉2 + N, where
Pr[N = 1] ≤ 1

2 − δ.
The difference comparing to Goldreich-Levin – no
control over the Rn’s.



The Information Theoretic Case The Computational Case

Reflections

Reflections cont.

List decoding. An efficient encoding C : {0,1}n 7→ {0,1}m,
and a decoder D. Such that the following holds for
any x ∈ {0,1}n and c of hamming distance 1

2 − δ
from C(x):
D(c, δ) outputs a list of size at most poly(1/δ) that
whp. contains x
The code we used here is known as the
Hadamard code

LPN - learning parity with noise. Find x given polynomially
many samples of 〈x ,Rn〉2 + N, where
Pr[N = 1] ≤ 1

2 − δ.
The difference comparing to Goldreich-Levin – no
control over the Rn’s.



The Information Theoretic Case The Computational Case

Reflections

Reflections cont.

List decoding. An efficient encoding C : {0,1}n 7→ {0,1}m,
and a decoder D. Such that the following holds for
any x ∈ {0,1}n and c of hamming distance 1

2 − δ
from C(x):
D(c, δ) outputs a list of size at most poly(1/δ) that
whp. contains x
The code we used here is known as the
Hadamard code

LPN - learning parity with noise. Find x given polynomially
many samples of 〈x ,Rn〉2 + N, where
Pr[N = 1] ≤ 1

2 − δ.

The difference comparing to Goldreich-Levin – no
control over the Rn’s.



The Information Theoretic Case The Computational Case

Reflections

Reflections cont.

List decoding. An efficient encoding C : {0,1}n 7→ {0,1}m,
and a decoder D. Such that the following holds for
any x ∈ {0,1}n and c of hamming distance 1

2 − δ
from C(x):
D(c, δ) outputs a list of size at most poly(1/δ) that
whp. contains x
The code we used here is known as the
Hadamard code

LPN - learning parity with noise. Find x given polynomially
many samples of 〈x ,Rn〉2 + N, where
Pr[N = 1] ≤ 1

2 − δ.
The difference comparing to Goldreich-Levin – no
control over the Rn’s.


	The Information Theoretic Case
	Pairwise independent hashing
	efficient function families
	hardcore predicate for regular functions

	The Computational Case
	Perfect case
	Easy case
	Intermediate case
	Actual case
	Reflections


