Foundation of Cryptography
(0368-4162-01), Lecture 7
MACs and Signatures

Iftach Haitner, Tel Aviv University

December 27, 2011

Message Authentication Code (MAC)

Section 1

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT’s (Gen, Mac, Vrfy) such that
@ Gen(1") outputs a key k € {0,1}*
© Mac(k, m) outputs a “tag" t
©Q Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT’s (Gen, Mac, Vrfy) such that
@ Gen(1") outputs a key k € {0,1}*
© Mac(k, m) outputs a “tag" t
©Q Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfy,(m, t) = 1 for any k € Supp(Gen(1")),
m € {0,1}" and t = Macy(m)

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT’s (Gen, Mac, Vrfy) such that
@ Gen(1") outputs a key k € {0,1}*
© Mac(k, m) outputs a “tag" t
©Q Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfy,(m, t) = 1 for any k € Supp(Gen(1")),
m € {0,1}" and t = Macy(m)

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if for
any oracle-aided PPT A:

Pr[k + Gen(1"); (m, t) « AMacVMyk(1m).
Vriy,(m, t) = 1 A Mac, was not asked on m| = neg(n)

Message Authentication Code (MAC)

@ “Private key" definition

Message Authentication Code (MAC)

@ “Private key" definition
@ Security definition too strong?

Message Authentication Code (MAC)

@ “Private key" definition

@ Security definition too strong? Any message? Use of
Verifier?

Message Authentication Code (MAC)

@ “Private key" definition

@ Security definition too strong? Any message? Use of
Verifier?

@ “Replay attacks"

Message Authentication Code (MAC)

@ “Private key" definition

@ Security definition too strong? Any message? Use of
Verifier?

@ “Replay attacks"

@ strong MACS

Message Authentication Code (MAC)

Length-restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for k € Supp(G(1”)), Mac, and
Vrfy, only accept messages of length n.

Message Authentication Code (MAC)

Bounded-query MACs

Definition 4 (/-time MAC)

A MAC scheme is existential unforgeable against ¢ queries (for
short, ¢-time MAC), if it is existential unforgeable as in
Definition 2, but A can only ask for ¢ queries.

Constructions

Section 2

Constructions

Constructions

Zero-time, restricted length, MAC

Construction 5 (Zero-time, restricted length, MAC)

@ Gen(1"): outputs k < {0,1}"
@ Macyk(m) =k
@ Vrfy,(m,t)=1,ifft =k

Constructions

Zero-time, restricted length, MAC

Construction 5 (Zero-time, restricted length, MAC)

@ Gen(1"): outputs k < {0,1}"
@ Macyk(m) =k
@ Vrfy,(m,t)=1,ifft =k

The above scheme is a length-restricted, zero-time MAC

Constructions

/-wise independent hash

Definition 7 (/-wise independent)

A function family # from {0,1}" to {0, 1} is ¢-wise
independent, where ¢ € N, if for every distinct

Xi,..., X € {0,1}"and every y1,...,y, € {0,1}™ it holds that
Procaulh(x1) = y1 A+ Ah(xe) = yo] = 27

Constructions

(-times, restricted length, MAC

Construction 8 (/-time MAC)

Let H = {H,: {0,1}" — {0,1}"} be an efficient (¢ + 1)-wise
independent function family.

@ Gen(1"): outputs h + H,

@ Mac(h,m) = h(m)

@ Vrfy(h,m,t) =1, iff t = h(m)

Constructions

(-times, restricted length, MAC

Construction 8 (/-time MAC)

Let H = {H,: {0,1}" — {0,1}"} be an efficient (¢ + 1)-wise
independent function family.

@ Gen(1"): outputs h + Hp

@ Mac(h,m) = h(m)

@ Vrfy(h,m,t) =1, iff t = h(m)

4

The above scheme is a length-restricted, ¢-time MAC

Constructions

(-times, restricted length, MAC

Construction 8 (/-time MAC)

Let H = {H,: {0,1}" — {0,1}"} be an efficient (¢ + 1)-wise
independent function family.

@ Gen(1"): outputs h + Hp

@ Mac(h,m) = h(m)

@ Vrfy(h,m,t) =1, iff t = h(m)

4

The above scheme is a length-restricted, ¢-time MAC

Proof: HW

Constructions

OWF — existential unforgeable MAC

Construction 10

Same as Construction 8, but uses function
F ={Fn: {0,1}" — {0,1}"} instead of .

Claim 11

Assuming that F is a PRF, then Construction 10 is an
existential unforgeable MAC.

| A

N

Constructions

OWF — existential unforgeable MAC

Construction 10

Same as Construction 8, but uses function
F ={Fn: {0,1}" — {0,1}"} instead of .

Claim 11

Assuming that F is a PRF, then Construction 10 is an
existential unforgeable MAC.

| A

N

Proof:

Constructions

OWF — existential unforgeable MAC

Construction 10

Same as Construction 8, but uses function
F ={Fn: {0,1}" — {0,1}"} instead of .

Claim 11

Assuming that F is a PRF, then Construction 10 is an
existential unforgeable MAC.

| A

N

Proof: Easy to prove if F is a family of random functions.
Hence, also holds in case F is a PRF.J

Constructions
e0

Any Length

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family # = {#: {0,1}* — {0, 1}"} is collision
resistant, if
Prlh < Hp, (X, x") < A(1", h): x # x" € {0,1}*
Ah(x) = h(x")] = neg(n)

for any PPT A.

Constructions
e0

Any Length

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family # = {#: {0,1}* — {0, 1}"} is collision
resistant, if
Prlh < Hp, (X, x") < A(1", h): x # x" € {0,1}*
Ah(x) = h(x")] = neg(n)

for any PPT A.

@ Not known to be implied by OWF

Constructions
oce

Any Length

Length restricted MAC — MAC

Construction 13 (Length restricted MAC — MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let

H ={Hp: {0,1}* — {0,1}"} be an efficient function family.
@ Gen'(1"): k + Gen(1"), h + Hp. Set k' = (k, h)
@ Mac) ,(m) = Mac(h(m))
® Vrfyj p(t,m) = Vrfy,(t, h(m))

Constructions
oce

Any Length

Length restricted MAC — MAC

Construction 13 (Length restricted MAC — MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let

H ={Hp: {0,1}* — {0,1}"} be an efficient function family.
@ Gen'(1"): k + Gen(1"), h + Hp. Set k' = (k, h)
@ Mac) ,(m) = Mac(h(m))
® Vrly p(t, m) = Vrly,(t, h(m))

Assume H is an efficient collision-resistant family and
(Gen, Mac, Vrfy) is existential unforgeable, then
(Gen’, Mac’, Vrfy') is existential unforgeable MAC.

Constructions
oce

Any Length

Length restricted MAC — MAC

Construction 13 (Length restricted MAC — MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let

H ={Hp: {0,1}* — {0,1}"} be an efficient function family.
@ Gen'(1"): k + Gen(1"), h + Hp. Set k' = (k, h)
@ Mac) ,(m) = Mac(h(m))
® Vrly p(t, m) = Vrly,(t, h(m))

Assume H is an efficient collision-resistant family and
(Gen, Mac, Vrfy) is existential unforgeable, then
(Gen’, Mac’, Vrfy') is existential unforgeable MAC.

Proof: ?

Signature Schemes

Section 3

Signature Schemes

Signature Schemes

Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen, Sign, Vrfy) such that
@ Gen(1") outputs a pair of keys (s, v) € {0,1}* x {0,1}*
© Sign(s, m) outputs a “signature” o € {0,1}*
©Q Vrfy(v, m,) outputs 1 (YES) or 0 (NO)

Signature Schemes

Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen, Sign, Vrfy) such that
@ Gen(1") outputs a pair of keys (s, v) € {0,1}* x {0,1}*
© Sign(s, m) outputs a “signature” o € {0,1}*
©Q Vrfy(v, m,) outputs 1 (YES) or 0 (NO)

Consistency: Vrfy ,(m,o) = 1 for any (s, v) € Supp(Gen(17)),
m € {0,1}* and o € Supp(Signg(m))

Signature Schemes

Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen, Sign, Vrfy) such that
@ Gen(1") outputs a pair of keys (s, v) € {0,1}* x {0,1}*
© Sign(s, m) outputs a “signature” o € {0,1}*
©Q Vrfy(v, m,) outputs 1 (YES) or 0 (NO)

Consistency: Vrfy ,(m,o) = 1 for any (s, v) € Supp(Gen(17)),
m € {0,1}* and o € Supp(Signg(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if for any
oracle-aided PPT A

Pr[(s, v) < Gen(1"); (m, o) + AS9"s(1" v):
Vrfy,(m, o) = 1 A Signg was not asked on m| = neg(n)

Signature Schemes

@ Signature — MAC

Signature Schemes

@ Signature — MAC

@ “Harder" to construct than MACs: (even restricted forms)
require OWF

Signature Schemes

@ Signature — MAC

@ “Harder" to construct than MACs: (even restricted forms)
require OWF

@ Oracle access to Vrfy is not given

Signature Schemes

@ Signature — MAC

@ “Harder" to construct than MACs: (even restricted forms)
require OWF

@ Oracle access to Vrfy is not given

@ Strong existential unforgeable signatures (for short, strong
signatures): infeasible to generate any new valid
signatures (even for message for which a signature was
asked)

Signature Schemes

@ Signature — MAC

@ “Harder" to construct than MACs: (even restricted forms)
require OWF

@ Oracle access to Vrfy is not given

@ Strong existential unforgeable signatures (for short, strong
signatures): infeasible to generate any new valid
signatures (even for message for which a signature was
asked)

OWFs imply strong existential unforgeable signatures.

OWFs — Signatures

Section 4

OWFs — Signatures

OWFs — Signatures
[leJe]e]

One Time Signatures

Length-restricted Signatures

Definition 18 (Length-restricted Signatures)

Same as in Definition 15, but for (s, v) € Supp(G(1")), Signg
and Vrfy, only accept messages of length n.

OWFs — Signatures
[e] Te]e]

One Time Signatures

Bounded-query Signatures

Definition 19 (/-time signatures)

A signature scheme is existential unforgeable against ¢-query
(for short, ¢-time signature), if it is existential unforgeable as in
Definition 16, but A can only ask for ¢ queries.

OWFs — Signatures
[e] Te]e]

One Time Signatures

Bounded-query Signatures

Definition 19 (/-time signatures)

A signature scheme is existential unforgeable against ¢-query
(for short, ¢-time signature), if it is existential unforgeable as in
Definition 16, but A can only ask for ¢ queries.

Claim 20

Assuming CRH exists: length restricted, one-time signatures,
imply one-time signatures.

| \

OWFs — Signatures
[e]e] o]

One Time Signatures

OWF — length restricted, One Time Signature

Construction 21 (length restricted, one time signature)

Let f: {0,1}" > {0,1}".

Q Gen(17): s9,s1,...,80, s} + {0,1}", let
s=(s9,sl,...,s9,s}) and
0 0y 1 1 0 0y 1 1
v= (v =1£(s)),v] =1£(s]),...,vy =1(sp), vy = f(s}))

@ Sign(s, m): Output (s, ...,s7")
Q Vrfy(v,m,o = (04,...,0n)) check that f(o;) = v, for all
i€ [n]

OWFs — Signatures
[e]e] o]

One Time Signatures

OWF — length restricted, One Time Signature

Construction 21 (length restricted, one time signature)

Let f: {0,1}" > {0,1}".

Q Gen(17): s9,s1,...,80, s} + {0,1}", let
s=(s9,sl,...,s9,s}) and
v=(v)=f(s9),vi =f(s]),..., v = f(sD), vl = f(s}))

@ Sign(s, m): Output (s, ...,s7")
Q Vrfy(v,m,o = (04,...,0n)) check that f(o;) = v, for all
i€ [n]

Assume that f is a OWF, then scheme from Construction 21 is
a length restricted one-time signature scheme

OWFs — Signatures
[e]e]e]]

One Time Signatures

Proving Lemma 22

Leta PPT A, Z C N and p € poly that break the security of
Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: y € {0,1}"

@ Choose (s, Vv) + Gen(1") and replace vj"f for a random
i* € [n] and j* € {0, 1}, with y.

Q If A(1",v) asks to sign message m € {0, 1}" with m; = j*
abort, otherwise use s to answer the query.

©Q Let (m, o) be A’s output. If o is not a valid signature for m,
or m;j« # j*, abort.
Otherwise, return ogjs.

OWFs — Signatures
[e]e]e]]

One Time Signatures

Proving Lemma 22

Leta PPT A, Z C N and p € poly that break the security of
Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: y € {0,1}"

@ Choose (s, Vv) + Gen(1") and replace vj"f for a random
i* € [n] and j* € {0, 1}, with y.

Q If A(1",v) asks to sign message m € {0, 1}" with m; = j*
abort, otherwise use s to answer the query.

©Q Let (m, o) be A’s output. If o is not a valid signature for m,
or m;j« # j*, abort.
Otherwise, return ogjs.

v is distributed as it is in the real “signature game" (ind. of /*
and j*).

OWFs — Signatures
[e]e]e]]

One Time Signatures

Proving Lemma 22

Leta PPT A, Z C N and p € poly that break the security of
Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: y € {0,1}"

@ Choose (s, Vv) + Gen(1") and replace vj"f for a random
i* € [n] and j* € {0, 1}, with y.

Q If A(1",v) asks to sign message m € {0, 1}" with m; = j*
abort, otherwise use s to answer the query.

©Q Let (m, o) be A’s output. If o is not a valid signature for m,
or m;j« # j*, abort.
Otherwise, return ogjs.

v is distributed as it is in the real “signature game" (ind. of /*
and j*). Therefore Inv inverts f w.p. 2np 27007 forany ne 7.

OWFs — Signatures
000000

Stateful schemes

Stateful schemes (also known as, Memory-dependant schemes)

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

OWFs — Signatures
000000

Stateful schemes

Stateful schemes (also known as, Memory-dependant schemes)

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

@ Make sense in many applications (e.g., , smartcards)

OWFs — Signatures
000000

Stateful schemes

Stateful schemes (also known as, Memory-dependant schemes)

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

@ Make sense in many applications (e.g., , smartcards)
@ We’ll use it a building block for building a stateless scheme

OWFs — Signatures
0000000

Stateful schemes

Naive construction

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 25 (Naive construction)

@ Gen'(1") outputs (s, v4) = Gen(1").
Q Signg, (m;), where m; is i'th message to sign:
Let ((m4,0%),...,(mj—1,0]_4)) be the previously signed
pairs of messages/signatures.
Q Let (Si+17 V,'+1) — Gen(1 n)
@ Leto; = Signg (m, vir1), and output
oi = (oj_1, Mj, Vi1, 0i).2
0 Vrfy/v1 (m7 OJ — (m17 V27 g1)7 ©aog (mf7 Vi+1 9 Ui)):
@ Verify Vrly, ((m;, V1), 05) = 1 for every j € [/]
@ Verify mi=m

@Where oy is the empty string.

OWFs — Signatures
[e]e] lelelele]

Stateful schemes

@ State is used for maintaining the private key (e.g., s;’) and
to prevent using the same one-time signature twice.

Q@ Inefficient scheme, thought still polynomial, both running
time and signature size are linear in number of signatures

OWFs — Signatures
[e]e] lelelele]

Stateful schemes

@ State is used for maintaining the private key (e.g., s;’) and
to prevent using the same one-time signature twice.

© Inefficient scheme, thought still polynomial, both running
time and signature size are linear in number of signatures

© Critically uses the fact that (Gen, Sign, Vrfy) is works for
any length

OWFs — Signatures
[e]e]e] Jelele]

Stateful schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,
then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

OWFs — Signatures
[e]e]e] Jelele]

Stateful schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,
then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

Proof: Let a PPT A’, Z C N and p € poly that breaks the security
of (Gen’, Sign’, Vrfy'), we present a PPT A that breaks the
security of (Gen, Sign, Vrfy).

OWFs — Signatures
[e]e]e] Jelele]

Stateful schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,
then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

Proof: Let a PPT A’, Z C N and p € poly that breaks the security
of (Gen’, Sign’, Vrfy'), we present a PPT A that breaks the
security of (Gen, Sign, Vrfy).

@ We assume for simplicity that p also bounds the query
complexity of A’

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

Whenever A’ succeeds, 3i = i(m, o) € [q] such that:
@ Sign’ was not asked by A’ on m.

© Sign’ was asked by A’ on m, for every i € [i — 1]

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

Whenever A’ succeeds, 3i = i(m, o) € [q] such that:
@ Sign’ was not asked by A’ on m.

© Sign’ was asked by A’ on m, for every i € [i — 1]

Proof:

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

Whenever A’ succeeds, 3i = i(m, o) € [q] such that:
@ Sign’ was not asked by A’ on m.

© Sign’ was asked by A’ on m, for every i € [i — 1]

Proof: Let / be the maximal index such that condition (2) holds
(cannot be g + 1).0]

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

Whenever A’ succeeds, 3i = i(m, o) € [q] such that:
@ Sign’ was not asked by A’ on m.

© Sign’ was asked by A’ on m, for every i € [i — 1]

Proof: Let / be the maximal index such that condition (2) holds
(cannot be g + 1).0]

@ Letm= (m, Vi), and let s; be the signing key generated
together with v;.

OWFs — Signatures
[e]e]e]e] Tele]

Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m,o = (my,va,04),...,(Mq, Vqt1,04)) be the pair output by A’

Whenever A’ succeeds, 3i = i(m, o) € [q] such that:
@ Sign’ was not asked by A’ on m.

© Sign’ was asked by A’ on m, for every i € [i — 1]

Proof: Let / be the maximal index such that condition (2) holds
(cannot be g + 1).0]

@ Letm= (m, Vi), and let s; be the signing key generated
together with v;.
@ Hence, Sign, (o, m) =1, and Sign,, was not queried by

Sign on m.

OWFs — Signatures
00000e0

Stateful schemes

Definition of A

Input: v, 1”7
Oracle: Sign,
@ Choose i* + [p= p(n)] and (', V') «+ Gen'(17).
© Emulate a random execution of A'S9 with a single twist:

@ On the i*’th call to Signy,,
it via Gen)
e When need to sign using s;-, use Sign,.

set v« = v (rather then choosing

Q Let(m,o = (my,vi,01),...,(Mg, Vg, 0q)) + A
Q Output ((mj«, vi+), o+) (abort if i* > q))

OWFs — Signatures
00000e0

Stateful schemes

Definition of A

Input: v, 1”7
Oracle: Sign,
@ Choose i* + [p= p(n)] and (', V') «+ Gen'(17).
© Emulate a random execution of A'S9 with a single twist:

@ On the i*’th call to Signy,,
it via Gen)
e When need to sign using s;-, use Sign,.

set v« = v (rather then choosing

Q Let(m,o = (my,vi,01),...,(Mg, Vg, 0q)) + A
Q Output ((mj«, vi+), o+) (abort if i* > q))

@ Sign, is called at most once

OWFs — Signatures
00000e0

Stateful schemes

Definition of A

Input: v, 1”7
Oracle: Sign,
@ Choose i* + [p= p(n)] and (', V') «+ Gen'(17).
© Emulate a random execution of A'S9 with a single twist:

@ On the i*’th call to Signy,,
it via Gen)
e When need to sign using s;-, use Sign,.

set v« = v (rather then choosing

Q Let(m,o = (my,vi,01),...,(Mg, Vg, 0q)) + A
Q Output ((mj«, vi+), o+) (abort if i* > q))

@ Sign, is called at most once
@ The emulated game A’S9" has the “right" distribution.

OWFs — Signatures
00000e0

Stateful schemes

Definition of A

Input: v, 1”7
Oracle: Sign,
@ Choose i* + [p= p(n)] and (', V') «+ Gen'(17).
© Emulate a random execution of A'S9 with a single twist:

@ On the i*’th call to Signy,,
it via Gen)
e When need to sign using s;-, use Sign,.

set v« = v (rather then choosing

Q Let(m,o = (my,vi,01),...,(Mg, Vg, 0q)) + A
Q Output ((mj«, vi+), o+) (abort if i* > q))

@ Sign, is called at most once

@ The emulated game A’S9" has the “right" distribution.
@ A breaks (Gen, Sign, Vrfy) whenever i* =/ > 1.

OWFs — Signatures
000000e

Stateful schemes

Analysis of A

Foranyne”
Pr[A(1") breaks (Gen, Sign, Vrfy)]
> Priejp—pnyli =]

1
> — . Pr[A’ breaks (Gen', Sign’, Vrfy')] >
> Pl (Genf, Sign' Vity')] > ooz

OWFs — Signatures
@00

Somewhat-Stateful Schemes

“Somewhat"-Stateful Schemes

A one-time scheme (Gen, Sign, Vrfy), and ¢ = ¢(n) € w(log n)

Construction 29

@ Gen’(1"): output (sy, v) < Gen(1").
@ Sign/;(m): choose unused¥ € {0,1}*

@ Fori=0to/—1:ifa; was notset:
Q Forbothje {0,1}, let(s7, ;v)« Gen(1")

Qo7 = Sign% _____ (@i,..i= (W 00V 1))
Q Output (7, ax,0x,..., @, , 07, ,,0F= Sign, (m))
@ Vrfy,(m, o' = (F,ay,oy,. 187 1,07, 11 0F)
Q Verify Vrly, (a7, .07,) =1forevery

ief0,....0—1}
Q Verify Vrfy, (m, o7) = 1 (where v; = (a)sg)

Somewhat-Stateful Schemes

@ More efficient scheme

OWFs — Signatures
(o] le}

Somewhat-Stateful Schemes

@ More efficient scheme
@ Sign’ does not keep track of the message history.

OWFs — Signatures

o] lo}

Somewhat-Stateful Schemes

@ More efficient scheme
@ Sign’ does not keep track of the message history.
© Each leaf is visited at most once.

OWFs — Signatures

o] lo}

Somewhat-Stateful Schemes

@ More efficient scheme

@ Sign’ does not keep track of the message history.
© Each leaf is visited at most once.

© Each one-time signature is used once.

OWFs — Signatures
[efe]]

Somewhat-Stateful Schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,

then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

Proof:

OWFs — Signatures
[efe]]

Somewhat-Stateful Schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,
then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

Proof: Let (m, o’ = (7, ay, 0y, - .,
output of a cheating A’ and let a7

5

or) be the

—1,07
m

1,..., £—17

OWFs — Signatures
[efe]]

Somewhat-Stateful Schemes

Assume that (Gen, Sign, Vrfy) is one time signature scheme,
then (Gen’, Sign’, Vrfy') is a stateful existential unforgeable
signature scheme.

Proof: Let (m, o’ = (7, ay, 0y, - .,
output of a cheating A’ and let a7

Claim 31

5

,_,»07) be the

—1,07
m

1,

Whenever A’ succeeds, 3i = i(m, ') € {0, ..., ¢} such that:
,) forevery i € [7— 1], where

.....

sr, , is the value sampled by Sign’ when sampling

,,,,,

,,,,,

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.
@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.
@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)
@ Sign'(17) :
@ choose 7 = (0 om)s

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.
@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)
@ Sign'(17) :

as the randomness for Gen.

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.
@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)
@ Sign'(17) :

as the randomness for Gen.

@ Sign’ keeps no state

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.
@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)
@ Sign'(17) :

as the randomness for Gen.

@ Sign’ keeps no state

@ A single one-time signature key might be used several
times, but always on the same message

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.

@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)

@ Sign'(17) :

as the randomness for Gen.

@ Sign’ keeps no state

@ A single one-time signature key might be used several
times, but always on the same message

Efficient scheme:

OWFs — Signatures
L]

Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let M, 4 be the set of random functions from {0, 1}* to {0, 1}9.

@ Gen'(17) : let (s, v) « Gen(1") and 7 <~ My(p) o(n)» Where
g € poly is large enough for the application below, and
outputs (8’ = (s,),V = v)

@ Sign'(17) :

as the randomness for Gen.

@ Sign’ keeps no state

@ A single one-time signature key might be used several
times, but always on the same message

Efficient scheme: use PRF

OWFs — Signatures
[leJe]

Without CRH

Without CRH

Definition 32 (target collision resistant (TCR))

A function family # = {#,} is target collision resistant, if any
pair of PPT’s Ay, Aa:

Pr((x,a) < A1(1"); h + Hp; X'+ Ax(a, h):
x # X' A h(x) = h(x)] = neg(n)

OWFs — Signatures
[leJe]

Without CRH

Without CRH

Definition 32 (target collision resistant (TCR))

A function family # = {#,} is target collision resistant, if any
pair of PPT’s Ay, Aa:

Pr((x,a) < A1(1"); h + Hp; X'+ Ax(a, h):
x # X' A h(x) = h(x)] = neg(n)

v

OWFs imply efficient compressing TCRs.

OWFs — Signatures
(o] o]

Without CRH

Definition 34 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time
existential unforgeable (for short, target one-time signature), if
for any pair of PPT’s A4, Ao

Pr[(m,a) < Ai(17); (s, v) + Gen(1");
(m', o) + A(a, Signg(m)): m" # mANry,(m', o) = 1]
— neg(n)

OWFs — Signatures
(o] o]

Without CRH

Definition 34 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time
existential unforgeable (for short, target one-time signature), if
for any pair of PPT’s A4, Ao
Pr[(m,a) < Ai(17); (s, v) + Gen(1");
(m', o) + A(a, Signg(m)): m" # mANry,(m', o) = 1]
= neg(n)

OWFs imply target one-time signatures.

OWFs — Signatures
ooe

Without CRH

Definition 36 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time
existential unforgeable (for short, random one-time signature), if
for any PPT A and any samplable ensemble M = { M} en, it
holds that

Pr[m < Mpy; (s, v) < Gen(1"); (m',) « A(m, Signg(m)) :
m' # mANry,(m', o) =1]
— neg(n)

OWFs — Signatures
ooe

Without CRH

Definition 36 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time
existential unforgeable (for short, random one-time signature), if
for any PPT A and any samplable ensemble M = { M} en, it
holds that

Pr[m < Mpy; (s, v) < Gen(1"); (m',) « A(m, Signg(m)) :
m' # mANry,(m', o) =1]
— neg(n)

Assume (Gen, Sign, Vrfy) is target one-time existential
unforgeable, then it is random one-time existential unforgeable.

OWFs — Signatures

[e]e]e]

Without CRH

Lemma 38

Assume that (Gen, Sign, Vrfy) is a target one-time signature
scheme, then (Gen’, Sign’, Vrfy') from Construction 29 is a
stateful existential unforgeable signature scheme.

OWFs — Signatures

[e]e]e]

Without CRH

Lemma 38

Assume that (Gen, Sign, Vrfy) is a target one-time signature
scheme, then (Gen’, Sign’, Vrfy') from Construction 29 is a
stateful existential unforgeable signature scheme.

Proof: ?

	Message Authentication Code (MAC)
	Constructions
	Any Length

	Signature Schemes
	OWFs -3mu Signatures
	One Time Signatures
	Stateful schemes
	Somewhat-Stateful Schemes
	Stateless Schemes
	Without CRH

