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Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT’s (Gen,Mac,Vrfy) such that
1 Gen(1n) outputs a key k ∈ {0,1}∗
2 Mac(k ,m) outputs a “tag" t
3 Vrfy(k ,m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfyk (m, t) = 1 for any k ∈ Supp(Gen(1n)),
m ∈ {0,1}n and t = Mack (m)

Definition 2 (Existential unforgability)

A MAC (Gen,Mac,Vrfy) is existential unforgeable (EU), if for
any oracle-aided PPT A:

Pr
[
k ← Gen(1n); (m, t)← AMack ,Vrfyk (1n) :

Vrfyk (m, t) = 1 ∧Mack was not asked on m
]

= neg(n)
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“Private key" definition

Security definition too strong? Any message? Use of
Verifier?
“Replay attacks"
strong MACS



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

“Private key" definition
Security definition too strong?

Any message? Use of
Verifier?
“Replay attacks"
strong MACS



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

“Private key" definition
Security definition too strong? Any message? Use of
Verifier?

“Replay attacks"
strong MACS



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

“Private key" definition
Security definition too strong? Any message? Use of
Verifier?
“Replay attacks"

strong MACS



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

“Private key" definition
Security definition too strong? Any message? Use of
Verifier?
“Replay attacks"
strong MACS



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

Length-restricted MACs

Definition 3 (Length-restricted MAC)
Same as in Definition 1, but for k ∈ Supp(G(1n)), Mack and
Vrfyk only accept messages of length n.
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Bounded-query MACs

Definition 4 (`-time MAC)
A MAC scheme is existential unforgeable against ` queries (for
short, `-time MAC), if it is existential unforgeable as in
Definition 2, but A can only ask for ` queries.
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Section 2

Constructions
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Zero-time, restricted length, MAC

Construction 5 (Zero-time, restricted length, MAC)

Gen(1n): outputs k ← {0,1}n

Mack (m) = k
Vrfyk (m, t) = 1, iff t = k

Claim 6
The above scheme is a length-restricted, zero-time MAC
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`-wise independent hash

Definition 7 (`-wise independent)
A function family H from {0,1}n to {0,1}m is `-wise
independent, where ` ∈ N, if for every distinct
x1, . . . , x` ∈ {0,1}n and every y1, . . . , y` ∈ {0,1}m, it holds that
Prh←H[h(x1) = y1 ∧ · · · ∧ h(x`) = y`] = 2−`m.
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`-times, restricted length, MAC

Construction 8 (`-time MAC)

Let H = {Hn : {0,1}n 7→ {0,1}n} be an efficient (`+ 1)-wise
independent function family.

Gen(1n): outputs h← Hn

Mac(h,m) = h(m)

Vrfy(h,m, t) = 1, iff t = h(m)

Claim 9
The above scheme is a length-restricted, `-time MAC

Proof: HW
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OWF =⇒ existential unforgeable MAC

Construction 10

Same as Construction 8, but uses function
F = {Fn : {0,1}n 7→ {0,1}n} instead of H.

Claim 11
Assuming that F is a PRF, then Construction 10 is an
existential unforgeable MAC.

Proof: Easy to prove if F is a family of random functions.
Hence, also holds in case F is a PRF.
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Any Length

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))
A function family H = {Hn : {0,1}∗ 7→ {0,1}n} is collision
resistant, if

Pr[h← Hn, (x , x ′)← A(1n,h) : x 6= x ′ ∈ {0,1}∗

∧h(x) = h(x ′)] = neg(n)

for any PPT A.

Not known to be implied by OWF
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Any Length

Length restricted MAC =⇒ MAC

Construction 13 (Length restricted MAC =⇒ MAC)

Let (Gen,Mac,Vrfy) be a length-restricted MAC, and let
H = {Hn : {0,1}∗ 7→ {0,1}n} be an efficient function family.

Gen′(1n): k ← Gen(1n), h← Hn. Set k ′ = (k ,h)

Mac′k ,h(m) = Mack (h(m))

Vrfy′k ,h(t ,m) = Vrfyk (t ,h(m))

Claim 14

Assume H is an efficient collision-resistant family and
(Gen,Mac,Vrfy) is existential unforgeable, then
(Gen′,Mac′,Vrfy′) is existential unforgeable MAC.

Proof: ?
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Section 3

Signature Schemes
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Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen,Sign,Vrfy) such that
1 Gen(1n) outputs a pair of keys (s, v) ∈ {0,1}∗ × {0,1}∗
2 Sign(s,m) outputs a “signature" σ ∈ {0,1}∗
3 Vrfy(v ,m, σ) outputs 1 (YES) or 0 (NO)

Consistency: Vrfyv (m, σ) = 1 for any (s, v) ∈ Supp(Gen(1n)),
m ∈ {0,1}∗ and σ ∈ Supp(Signs(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if for any
oracle-aided PPT A

Pr
[
(s, v)← Gen(1n); (m, σ)← ASigns (1n, v) :

Vrfyv (m, σ) = 1 ∧ Signs was not asked on m
]

= neg(n)



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen,Sign,Vrfy) such that
1 Gen(1n) outputs a pair of keys (s, v) ∈ {0,1}∗ × {0,1}∗
2 Sign(s,m) outputs a “signature" σ ∈ {0,1}∗
3 Vrfy(v ,m, σ) outputs 1 (YES) or 0 (NO)

Consistency: Vrfyv (m, σ) = 1 for any (s, v) ∈ Supp(Gen(1n)),
m ∈ {0,1}∗ and σ ∈ Supp(Signs(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if for any
oracle-aided PPT A

Pr
[
(s, v)← Gen(1n); (m, σ)← ASigns (1n, v) :

Vrfyv (m, σ) = 1 ∧ Signs was not asked on m
]

= neg(n)



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

Definition

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen,Sign,Vrfy) such that
1 Gen(1n) outputs a pair of keys (s, v) ∈ {0,1}∗ × {0,1}∗
2 Sign(s,m) outputs a “signature" σ ∈ {0,1}∗
3 Vrfy(v ,m, σ) outputs 1 (YES) or 0 (NO)

Consistency: Vrfyv (m, σ) = 1 for any (s, v) ∈ Supp(Gen(1n)),
m ∈ {0,1}∗ and σ ∈ Supp(Signs(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if for any
oracle-aided PPT A

Pr
[
(s, v)← Gen(1n); (m, σ)← ASigns (1n, v) :

Vrfyv (m, σ) = 1 ∧ Signs was not asked on m
]

= neg(n)



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

Signature =⇒ MAC

“Harder" to construct than MACs: (even restricted forms)
require OWF
Oracle access to Vrfy is not given
Strong existential unforgeable signatures (for short, strong
signatures): infeasible to generate any new valid
signatures (even for message for which a signature was
asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.
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Section 4

OWFs =⇒ Signatures
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One Time Signatures

Length-restricted Signatures

Definition 18 (Length-restricted Signatures)
Same as in Definition 15, but for (s, v) ∈ Supp(G(1n)), Signs
and Vrfyv only accept messages of length n.
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One Time Signatures

Bounded-query Signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query
(for short, `-time signature), if it is existential unforgeable as in
Definition 16, but A can only ask for ` queries.

Claim 20
Assuming CRH exists: length restricted, one-time signatures,
imply one-time signatures.
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One Time Signatures

Bounded-query Signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query
(for short, `-time signature), if it is existential unforgeable as in
Definition 16, but A can only ask for ` queries.

Claim 20
Assuming CRH exists: length restricted, one-time signatures,
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One Time Signatures

OWF =⇒ length restricted, One Time Signature

Construction 21 (length restricted, one time signature)

Let f : {0,1}n 7→ {0,1}n.
1 Gen(1n): s0

1, s
1
1, . . . , s

0
n, s1

n ← {0,1}n, let
s =

(
s0

1, s
1
1, . . . , s

0
n, s1

n
)

and
v =

(
v0

1 = f (s0
1), v1

1 = f (s1
1), . . . , v0

n = f (s0
n), v1

n = f (s1
n)
)

2 Sign(s,m): Output (sm1
1 , . . . , smn

n )

3 Vrfy(v ,m, σ = (σ1, . . . , σn)) check that f (σi) = vmi for all
i ∈ [n]

Lemma 22

Assume that f is a OWF, then scheme from Construction 21 is
a length restricted one-time signature scheme
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One Time Signatures

Proving Lemma 22

Let a PPT A, I ⊆ N and p ∈ poly that break the security of
Construction 21, we use A to invert f .

Algorithm 23 (Inv)
Input: y ∈ {0,1}n
1 Choose (s, v)← Gen(1n) and replace v i∗

j∗ for a random
i∗ ∈ [n] and j∗ ∈ {0,1}, with y .

2 If A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = j∗

abort, otherwise use s to answer the query.
3 Let (m, σ) be A’s output. If σ is not a valid signature for m,

or mi∗ 6= j∗, abort.
Otherwise, return σi∗ .

v is distributed as it is in the real “signature game" (ind. of i∗

and j∗). Therefore Inv inverts f w.p. 1
2np(n) for any n ∈ I.
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Stateful schemes

Stateful schemes (also known as, Memory-dependant schemes)

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

Make sense in many applications (e.g., , smartcards)
We’ll use it a building block for building a stateless scheme
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Stateful schemes

Naive construction

Let (Gen,Sign,Vrfy) be a one-time signature scheme.

Construction 25 (Naive construction)

1 Gen′(1n) outputs (s1, v1) = Gen(1n).
2 Sign′s1

(mi), where mi is i ’th message to sign:
Let ((m1, σ

′
1), . . . , (mi−1, σ

′
i−1)) be the previously signed

pairs of messages/signatures.
1 Let (si+1, vi+1)← Gen(1n)
2 Let σi = Signsi

(mi , vi+1), and output
σ′i = (σ′i−1,mi , vi+1, σi ).a

3 Vrfy′v1
(m, σ′ = (m1, v2, σ1), . . . , (mi , vi+1, σi)):

1 Verify Vrfyvj
((mj , vj+1), σj ) = 1 for every j ∈ [i]

2 Verify mi = m

aWhere σ′0 is the empty string.
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Stateful schemes

1 State is used for maintaining the private key (e.g., si ’) and
to prevent using the same one-time signature twice.

2 Inefficient scheme, thought still polynomial, both running
time and signature size are linear in number of signatures

3 Critically uses the fact that (Gen,Sign,Vrfy) is works for
any length
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Stateful schemes

Lemma 26

Assume that (Gen,Sign,Vrfy) is one time signature scheme,
then (Gen′,Sign′,Vrfy′) is a stateful existential unforgeable
signature scheme.

Proof: Let a PPT A′, I ⊆ N and p ∈ poly that breaks the security
of (Gen′,Sign′,Vrfy′), we present a PPT A that breaks the
security of (Gen,Sign,Vrfy).

We assume for simplicity that p also bounds the query
complexity of A′
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Stateful schemes

Proving Lemma 26 cont.

Let the random variables
(m, σ = (m1, v2, σ1), . . . , (mq, vq+1, σq)) be the pair output by A′

Claim 27

Whenever A′ succeeds, ∃̃i = ĩ(m, σ) ∈ [q] such that:
1 Sign′ was not asked by A′ on mĩ .

2 Sign′ was asked by A′ on mi , for every i ∈ [̃i − 1]

Proof: Let ĩ be the maximal index such that condition (2) holds
(cannot be q + 1).

Let m̃ = (mĩ , ṽi+1), and let s̃i be the signing key generated
together with ṽi .
Hence, Signs̃i

(σ̃i , m̃) = 1, and Signsi
was not queried by

Sign′s on m̃.
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Let m̃ = (mĩ , ṽi+1), and let s̃i be the signing key generated
together with ṽi .
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Stateful schemes

Definition of A

Algorithm 28 (A)
Input: v , 1n

Oracle: Signs
1 Choose i∗ ← [p = p(n)] and (s′, v ′)← Gen′(1n).
2 Emulate a random execution of A′Sign′s′ with a single twist:

On the i∗’th call to Sign′s′ , set vi∗ = v (rather then choosing
it via Gen)
When need to sign using si∗ , use Signs.

3 Let (m, σ = (m1, v1, σ1), . . . , (mq, vq, σq))← A′

4 Output ((mi∗ , vi∗), σi∗) (abort if i∗ > q))

Signs is called at most once
The emulated game A′Sign′s′ has the “right" distribution.
A breaks (Gen,Sign,Vrfy) whenever i∗ = ĩ > 1.
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Stateful schemes

Analysis of A

For any n ∈ I

Pr[A(1n) breaks (Gen,Sign,Vrfy)]

≥ Pri∗←[p=p(n)][i = ĩ]

≥ 1
p
· Pr[A′ breaks (Gen′,Sign′,Vrfy′)] ≥ 1

p(n)2



Message Authentication Code (MAC) Constructions Signature Schemes OWFs =⇒ Signatures

Somewhat-Stateful Schemes

“Somewhat"-Stateful Schemes

A one-time scheme (Gen,Sign,Vrfy), and ` = `(n) ∈ ω(log n)

Construction 29

Gen′(1n): output (sλ, vλ)← Gen(1n).
Sign′s(m): choose unused r ∈ {0,1}`

1 For i = 0 to `− 1: if ar1,...,i
was not set:

1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n)

2 σr1,...,i = Signsr1,...,i
(a1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2 Output (r ,aλ, σλ, . . . ,ar1,...,`−1
, σr1,...,`−1

, σr = Signsr
(m))

Vrfy′v (m, σ′ = (r ,aλ, σλ, . . . ,ar−1, σr1,...,`−1
, σr )

1 Verify Vrfyvr1,...,i
(ar1,...,i

, σr1,...,i
) = 1 for every

i ∈ {0, . . . , `− 1}
2 Verify Vrfyvr

(m, σr ) = 1 (where vr = (ar )r [`])
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Somewhat-Stateful Schemes

1 More efficient scheme

2 Sign′ does not keep track of the message history.
3 Each leaf is visited at most once.
4 Each one-time signature is used once.
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Somewhat-Stateful Schemes

Lemma 30

Assume that (Gen,Sign,Vrfy) is one time signature scheme,
then (Gen′,Sign′,Vrfy′) is a stateful existential unforgeable
signature scheme.

Proof:

Let (m, σ′ = (r ,aλ, σλ, . . . ,ar−1, σr1,...,`−1
, σr ) be the

output of a cheating A′ and let ar = m

Claim 31

Whenever A′ succeeds, ∃̃i = ĩ(m, σ′) ∈ {0, . . . , `} such that:
1 Sign′s queried Signsr1,...,i

(ar1,...,i
) for every i ∈ [̃i − 1], where

sr1,...,i
is the value sampled by Sign′ when sampling

ar1,...,i−1
(or sλ, if ĩ = 0)

2 Sign′s did not query Signsr1,...,i
(ar1,...,i

).
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Stateless Schemes

Stateless Scheme

Inefficient scheme:
Let Π`,q be the set of random functions from {0,1}∗ to {0,1}q.

1 Gen′(1n) : let (s, v)← Gen(1n) and π ← Π`(n),q(n), where
q ∈ poly is large enough for the application below, and
outputs (s′ = (s, π), v ′ = v)

2 Sign′(1n) :
1 choose r = π(0` ◦m)1,...,`
2 When setting (sr1,...,i ,j , vr1,...,i ,j )← Gen(1n), use π(r1,...,i , j)

as the randomness for Gen.

Sign′ keeps no state
A single one-time signature key might be used several
times, but always on the same message

Efficient scheme: use PRF
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Without CRH

Without CRH

Definition 32 (target collision resistant (TCR))
A function family H = {Hn} is target collision resistant, if any
pair of PPT’s A1,A2:

Pr[(x ,a)← A1(1n); h← Hn; x ′ ← A2(a,h) :

x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

Theorem 33
OWFs imply efficient compressing TCRs.
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Without CRH

Definition 34 (target one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is target one-time
existential unforgeable (for short, target one-time signature), if
for any pair of PPT’s A1,A2

Pr
[
(m,a)← A1(1n); (s, v)← Gen(1n);

(m′, σ)← A(a,Signs(m)) : m′ 6= m ∧ Vrfyv (m′, σ) = 1
]

= neg(n)

Claim 35
OWFs imply target one-time signatures.
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Without CRH

Definition 36 (random one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is random one-time
existential unforgeable (for short, random one-time signature), if
for any PPT A and any samplable ensembleM = {Mn}n∈N, it
holds that

Pr
[
m←Mn; (s, v)← Gen(1n); (m′, σ)← A(m,Signs(m)) :

m′ 6= m ∧ Vrfyv (m′, σ) = 1
]

= neg(n)

Claim 37
Assume (Gen,Sign,Vrfy) is target one-time existential
unforgeable, then it is random one-time existential unforgeable.
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Without CRH

Lemma 38
Assume that (Gen,Sign,Vrfy) is a target one-time signature
scheme, then (Gen′,Sign′,Vrfy′) from Construction 29 is a
stateful existential unforgeable signature scheme.

Proof: ?
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Without CRH

Lemma 38
Assume that (Gen,Sign,Vrfy) is a target one-time signature
scheme, then (Gen′,Sign′,Vrfy′) from Construction 29 is a
stateful existential unforgeable signature scheme.

Proof: ?
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