
Notation One Way Functions

Foundation of Cryptography
(0368-4162-01), Lecture 1

One Way Functions

Iftach Haitner, Tel Aviv University

November 1-8, 2011

Notation One Way Functions

Section 1

Notation

Notation One Way Functions

Notation I

For t ∈ N, let [t] := {1, . . . , t}.
Given a string x ∈ {0,1}∗ and 0 ≤ i < j ≤ |x |, let xi,...,j
stands for the substring induced by taking the i , . . . , j bit of
x (i.e., x [i] . . . , x [j]).
Given a function f defined over a set U , and a set S ⊆ U ,
let f (S) := {f (x) : x ∈ S}, and for y ∈ f (U) let
f−1(y) := {x ∈ U : f (x) = y}.
poly stands for the set of all polynomials.
The worst-case running-time of a polynomial-time
algorithm on input x , is bounded by p(|x |) for some
p ∈ poly.
A function is polynomial-time computable, if there exists a
polynomial-time algorithm to compute it.

Notation One Way Functions

Notation II

PPT stands for probabilistic polynomial-time algorithms.

A function µ : N 7→ [0,1] is negligible, denoted
µ(n) = neg(n), if for any p ∈ poly there exists n′ ∈ N with
µ(n) ≤ 1/p(n) for any n > n′.

Notation One Way Functions

Distribution and random variables I

The support of a distribution P over a finite set U , denoted
Supp(P), is defined as {u ∈ U : P(u) > 0}.
Given a distribution P and en event E with PrP [E] > 0, we
let (P | E) denote the conditional distribution P given E
(i.e., (P | E)(x) = D(x)∧E

PrP [E]).

For t ∈ N, let let Ut denote a random variable uniformly
distributed over {0,1}t .
Given a random variable X , we let x ← X denote that x is
distributed according to X (e.g., Prx←X [x = 7]).
Given a final set S, we let x ← S denote that x is uniformly
distributed in S.

Notation One Way Functions

Distribution and random variables II

We use the convention that when a random variable
appears twice in the same expression, it refers to a single
instance of this random variable. For instance,
Pr[X = X] = 1 (regardless of the definition of X).

Given distribution P over U and t ∈ N, we let P t over U t be
defined by Dt (x1, . . . , xt) = Πi∈[t]D(xi).

Similarly, given a random variable X , we let X t denote the
random variable induced by t independent samples from
X .

Notation One Way Functions

Section 2

One Way Functions

Notation One Way Functions

One-Way Functions

Definition 1 (One-Way Functions (OWFs))
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is one-way, if for any PPT A

Pry←f (Un)[A(1n, y) ∈ f−1(y)] = neg(n)

Un: a random variable uniformly distributed over
{0,1}n

polynomial-time computable: there exists a polynomial-time
algorithm F , such that F (x) = f (x) for every
x ∈ {0,1}∗

PPT : probabilistic polynomial-time algorithm
neg: a function µ : N 7→ [0,1] is a negligible function of

n, denoted µ(n) = neg(n), if for any p ∈ poly there
exists n′ ∈ N such that g(n) < 1/p(n) for all n > n′

We will typically omit 1n from the parameter list of A

Notation One Way Functions

1 Is this the right definition?
Asymptotic
Efficiently computable
On the average
Only against PPT ’s

2 (most) Crypto implies OWFs
3 Do OWFs imply Crypto?
4 Where do we find them
5 Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is
one-way, if for any polynomial-size family of circuits {Cn}n∈N

Pry←f (Un)[Cn(y) ∈ f−1(y)] = neg(n)

Notation One Way Functions

1 Is this the right definition?
Asymptotic
Efficiently computable
On the average
Only against PPT ’s

2 (most) Crypto implies OWFs
3 Do OWFs imply Crypto?
4 Where do we find them

5 Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is
one-way, if for any polynomial-size family of circuits {Cn}n∈N

Pry←f (Un)[Cn(y) ∈ f−1(y)] = neg(n)

Notation One Way Functions

1 Is this the right definition?
Asymptotic
Efficiently computable
On the average
Only against PPT ’s

2 (most) Crypto implies OWFs
3 Do OWFs imply Crypto?
4 Where do we find them
5 Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is
one-way, if for any polynomial-size family of circuits {Cn}n∈N

Pry←f (Un)[Cn(y) ∈ f−1(y)] = neg(n)

Notation One Way Functions

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)
A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if
|f (x)| = |x | for any x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving
OWFs

Proof idea: use the assumed OWF to create a length
preserving one

Notation One Way Functions

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)
A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if
|f (x)| = |x | for any x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving
OWFs

Proof idea: use the assumed OWF to create a length
preserving one

Notation One Way Functions

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)
A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if
|f (x)| = |x | for any x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving
OWFs

Proof idea: use the assumed OWF to create a length
preserving one

Notation One Way Functions

Length Preserving OWFs

Partial domain functions

Definition 5 (Partial domain functions)

For m, ` : N 7→ N, let h : {0,1}m(n) 7→ {0,1}`(n) denote a function
defined over input lengths in {m(n)}n∈N, and maps strings of
length m(n) to strings of length `(n).

The definition of one-wayness naturally extends to such
functions.

Notation One Way Functions

Length Preserving OWFs

OWFs imply Length Preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on
its computing-time and assume wlg. that p is monotony
increasing (can we?).

Construction 6 (the length preserving function)

Define g : {0,1}p(n) 7→ {0,1}p(n) as

g(x) = f (x1,...,n),0p(n)−|f (x1,...,n)|

Note that g is length preserving and efficient (why?).

Claim 7
g is one-way.

How can we prove that g is one-way?
Answer: using reduction

Notation One Way Functions

Length Preserving OWFs

OWFs imply Length Preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on
its computing-time and assume wlg. that p is monotony
increasing (can we?).

Construction 6 (the length preserving function)

Define g : {0,1}p(n) 7→ {0,1}p(n) as

g(x) = f (x1,...,n),0p(n)−|f (x1,...,n)|

Note that g is length preserving and efficient (why?).

Claim 7
g is one-way.

How can we prove that g is one-way?
Answer: using reduction

Notation One Way Functions

Length Preserving OWFs

OWFs imply Length Preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on
its computing-time and assume wlg. that p is monotony
increasing (can we?).

Construction 6 (the length preserving function)

Define g : {0,1}p(n) 7→ {0,1}p(n) as

g(x) = f (x1,...,n),0p(n)−|f (x1,...,n)|

Note that g is length preserving and efficient (why?).

Claim 7
g is one-way.

How can we prove that g is one-way?

Answer: using reduction

Notation One Way Functions

Length Preserving OWFs

OWFs imply Length Preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on
its computing-time and assume wlg. that p is monotony
increasing (can we?).

Construction 6 (the length preserving function)

Define g : {0,1}p(n) 7→ {0,1}p(n) as

g(x) = f (x1,...,n),0p(n)−|f (x1,...,n)|

Note that g is length preserving and efficient (why?).

Claim 7
g is one-way.

How can we prove that g is one-way?
Answer: using reduction

Notation One Way Functions

Length Preserving OWFs

Proving that g is one-way

Proof:
Assume that g is not one-way. Namely, there exists PPT A a
q ∈ poly and an infinite I ⊆ {p(n) : n ∈ N}, with

Pry←g(Un)[A(y) ∈ g−1(y)] > 1/q(n) (1)

for any n ∈ I.

We would like to use A for inverting f .

Notation One Way Functions

Length Preserving OWFs

Proving that g is one-way

Proof:
Assume that g is not one-way. Namely, there exists PPT A a
q ∈ poly and an infinite I ⊆ {p(n) : n ∈ N}, with

Pry←g(Un)[A(y) ∈ g−1(y)] > 1/q(n) (1)

for any n ∈ I.
We would like to use A for inverting f .

Notation One Way Functions

Length Preserving OWFs

Algorithm 8 (The inverter B)
Input: 1n and y ∈ {0,1}∗.

1 Let x = A(1p(n), y ,0p(n)−|y |).
2 Return x1,...,n.

Claim 9
Let I ′ := {n ∈ N : p(n) ∈ I}. Then

1 I ′ is infinite
2 For any n ∈ I ′, it holds that

Pry←g(Un)[B(y) ∈ f−1(y)] > 1/q(p(n)).

in contradiction to the assumed one-wayness of f .

Notation One Way Functions

Length Preserving OWFs

Algorithm 8 (The inverter B)
Input: 1n and y ∈ {0,1}∗.

1 Let x = A(1p(n), y ,0p(n)−|y |).
2 Return x1,...,n.

Claim 9
Let I ′ := {n ∈ N : p(n) ∈ I}. Then

1 I ′ is infinite
2 For any n ∈ I ′, it holds that

Pry←g(Un)[B(y) ∈ f−1(y)] > 1/q(p(n)).

in contradiction to the assumed one-wayness of f .

Notation One Way Functions

Length Preserving OWFs

Conclusion

Remark 10
We directly related the hardness of f to that of g
The reduction is not “security preserving"

Notation One Way Functions

Length Preserving OWFs

From partial domain functions to all-length functions

Construction 11

Given a function f : {0,1}m(n) 7→ {0,1}`(n),
fall : {0,1}∗ 7→ {0,1}∗ as

fall(x) = f (x1,...,k(n)),0n−k(n)

where n = |x | and k(n) := max{m(n′) ≤ n : n′ ∈ N}.

Claim 12
Assume that f is a one-way function and that m is monotone,
polynomial-time commutable an satisfies m(n+1)

m(n) ≤ p(n) for
some p ∈ poly, then fall is a one-way function. Further, if f is
length preserving, then so is fall .

Proof: ?

Notation One Way Functions

Length Preserving OWFs

From partial domain functions to all-length functions

Construction 11

Given a function f : {0,1}m(n) 7→ {0,1}`(n),
fall : {0,1}∗ 7→ {0,1}∗ as

fall(x) = f (x1,...,k(n)),0n−k(n)

where n = |x | and k(n) := max{m(n′) ≤ n : n′ ∈ N}.

Claim 12
Assume that f is a one-way function and that m is monotone,
polynomial-time commutable an satisfies m(n+1)

m(n) ≤ p(n) for
some p ∈ poly, then fall is a one-way function. Further, if f is
length preserving, then so is fall .

Proof: ?

Notation One Way Functions

Weak One Way Functions

Weak One Way Functions

Definition 13 (weak one-way functions)
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is α-one-way, if

Pry←f (Un)[A(1n, y) ∈ f−1(y)] ≤ α(n)

for any PPT A and large enough n ∈ N.

1 (strong) OWF according to Definition 1, are
neg(n)-one-way according to the above definition

2 Examples
3 Can we “amplify" weak OWF to strong ones?

Notation One Way Functions

Weak One Way Functions

Weak One Way Functions

Definition 13 (weak one-way functions)
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is α-one-way, if

Pry←f (Un)[A(1n, y) ∈ f−1(y)] ≤ α(n)

for any PPT A and large enough n ∈ N.

1 (strong) OWF according to Definition 1, are
neg(n)-one-way according to the above definition

2 Examples
3 Can we “amplify" weak OWF to strong ones?

Notation One Way Functions

Weak One Way Functions

Weak One Way Functions

Definition 13 (weak one-way functions)
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is α-one-way, if

Pry←f (Un)[A(1n, y) ∈ f−1(y)] ≤ α(n)

for any PPT A and large enough n ∈ N.

1 (strong) OWF according to Definition 1, are
neg(n)-one-way according to the above definition

2 Examples

3 Can we “amplify" weak OWF to strong ones?

Notation One Way Functions

Weak One Way Functions

Weak One Way Functions

Definition 13 (weak one-way functions)
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is α-one-way, if

Pry←f (Un)[A(1n, y) ∈ f−1(y)] ≤ α(n)

for any PPT A and large enough n ∈ N.

1 (strong) OWF according to Definition 1, are
neg(n)-one-way according to the above definition

2 Examples
3 Can we “amplify" weak OWF to strong ones?

Notation One Way Functions

Weak One Way Functions

Strong to weak OWFs

Claim 14
Assume there exists OWFs, then there exist functions that are
2
3 -one-way, but not (strong) one-way

Proof: let f be a OWF. Define g(x) = (1, f (x)) if x1 = 1, and 0
otherwise.

Notation One Way Functions

Weak One Way Functions

Strong to weak OWFs

Claim 14
Assume there exists OWFs, then there exist functions that are
2
3 -one-way, but not (strong) one-way

Proof: let f be a OWF. Define g(x) = (1, f (x)) if x1 = 1, and 0
otherwise.

Notation One Way Functions

Weak One Way Functions

Weak to Strong OWFs

Theorem 15
Assume there exists (1− α)-weak OWFs with α(n) > 1/p(n)
for some p ∈ poly, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (can we do
so?)

Construction 16 (g – the strong one-way function)
Let t : N 7→ N be a polynomial-time computable function
satisfying t(n) ∈ ω(log n/α(n)). Define
g : ({0,1}n)t(n) 7→ ({0,1}n)t(n) as

g(x1, . . . , xt) = f (x1), . . . , f (xt)

Claim 17
g is one-way.

Notation One Way Functions

Weak One Way Functions

Weak to Strong OWFs

Theorem 15
Assume there exists (1− α)-weak OWFs with α(n) > 1/p(n)
for some p ∈ poly, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (can we do
so?)

Construction 16 (g – the strong one-way function)
Let t : N 7→ N be a polynomial-time computable function
satisfying t(n) ∈ ω(log n/α(n)). Define
g : ({0,1}n)t(n) 7→ ({0,1}n)t(n) as

g(x1, . . . , xt) = f (x1), . . . , f (xt)

Claim 17
g is one-way.

Notation One Way Functions

Weak One Way Functions

Weak to Strong OWFs

Theorem 15
Assume there exists (1− α)-weak OWFs with α(n) > 1/p(n)
for some p ∈ poly, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (can we do
so?)

Construction 16 (g – the strong one-way function)
Let t : N 7→ N be a polynomial-time computable function
satisfying t(n) ∈ ω(log n/α(n)). Define
g : ({0,1}n)t(n) 7→ ({0,1}n)t(n) as

g(x1, . . . , xt) = f (x1), . . . , f (xt)

Claim 17
g is one-way.

Notation One Way Functions

Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n)
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.
Unfortunately, we can assume none of the above.

Notation One Way Functions

Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n)
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.

Unfortunately, we can assume none of the above.

Notation One Way Functions

Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n)
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.
Unfortunately, we can assume none of the above.

Notation One Way Functions

Weak One Way Functions

Failing Sets

Definition 18 (failing set)

A function f : {0,1}n 7→ {0,1}`(n) has a (δ(n), ε(n))-failing set
for A, if for large enough n, exists set S(n) ⊆ {0,1}`(n) with

1 Pr[f (Un) ∈ S(n)] ≥ δ(n), and
2 Pr[A(y) ∈ f−1(y)] < ε(n), for every y ∈ S(n)

Claim 19
Let f be a (1− α)-OWF. Then f has (α(n)/2,1/p(n))-failing set
for any PPT A and p ∈ poly.

Proof: Assume ∃ PPT A, a p ∈ poly and an infinite set I ⊆ N
such that for every n ∈ I, ∃L(n) ⊆ {0,1}n with

1 Pr[f (Un) ∈ L(n)] ≥ 1− α(n)/2, and
2 Pr[A(y) ∈ f−1(y)] ≥ 1/p(n), for every y ∈ L(n)

We’ll use A to contradict the hardness of f .

Notation One Way Functions

Weak One Way Functions

Failing Sets

Definition 18 (failing set)

A function f : {0,1}n 7→ {0,1}`(n) has a (δ(n), ε(n))-failing set
for A, if for large enough n, exists set S(n) ⊆ {0,1}`(n) with

1 Pr[f (Un) ∈ S(n)] ≥ δ(n), and
2 Pr[A(y) ∈ f−1(y)] < ε(n), for every y ∈ S(n)

Claim 19
Let f be a (1− α)-OWF. Then f has (α(n)/2,1/p(n))-failing set
for any PPT A and p ∈ poly.

Proof: Assume ∃ PPT A, a p ∈ poly and an infinite set I ⊆ N
such that for every n ∈ I, ∃L(n) ⊆ {0,1}n with

1 Pr[f (Un) ∈ L(n)] ≥ 1− α(n)/2, and
2 Pr[A(y) ∈ f−1(y)] ≥ 1/p(n), for every y ∈ L(n)

We’ll use A to contradict the hardness of f .

Notation One Way Functions

Weak One Way Functions

Failing Sets

Definition 18 (failing set)

A function f : {0,1}n 7→ {0,1}`(n) has a (δ(n), ε(n))-failing set
for A, if for large enough n, exists set S(n) ⊆ {0,1}`(n) with

1 Pr[f (Un) ∈ S(n)] ≥ δ(n), and
2 Pr[A(y) ∈ f−1(y)] < ε(n), for every y ∈ S(n)

Claim 19
Let f be a (1− α)-OWF. Then f has (α(n)/2,1/p(n))-failing set
for any PPT A and p ∈ poly.

Proof: Assume ∃ PPT A, a p ∈ poly and an infinite set I ⊆ N
such that for every n ∈ I, ∃L(n) ⊆ {0,1}n with

1 Pr[f (Un) ∈ L(n)] ≥ 1− α(n)/2, and
2 Pr[A(y) ∈ f−1(y)] ≥ 1/p(n), for every y ∈ L(n)

We’ll use A to contradict the hardness of f .

Notation One Way Functions

Weak One Way Functions

Failing Sets

Definition 18 (failing set)

A function f : {0,1}n 7→ {0,1}`(n) has a (δ(n), ε(n))-failing set
for A, if for large enough n, exists set S(n) ⊆ {0,1}`(n) with

1 Pr[f (Un) ∈ S(n)] ≥ δ(n), and
2 Pr[A(y) ∈ f−1(y)] < ε(n), for every y ∈ S(n)

Claim 19
Let f be a (1− α)-OWF. Then f has (α(n)/2,1/p(n))-failing set
for any PPT A and p ∈ poly.

Proof: Assume ∃ PPT A, a p ∈ poly and an infinite set I ⊆ N
such that for every n ∈ I, ∃L(n) ⊆ {0,1}n with

1 Pr[f (Un) ∈ L(n)] ≥ 1− α(n)/2, and
2 Pr[A(y) ∈ f−1(y)] ≥ 1/p(n), for every y ∈ L(n)

We’ll use A to contradict the hardness of f .

Notation One Way Functions

Weak One Way Functions

Using A to invert f

Algorithm 20 (The inverter B)
Input: y ∈ {0,1}n.
Do (with fresh randomness) for np(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 21

For every n ∈ I, it holds that
Pry←f (Un)[B(y) ∈ f−1(y)] > 1− α(n)

Hence, f is not (1− α(n))-one-way

Notation One Way Functions

Weak One Way Functions

Using A to invert f

Algorithm 20 (The inverter B)
Input: y ∈ {0,1}n.
Do (with fresh randomness) for np(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 21

For every n ∈ I, it holds that
Pry←f (Un)[B(y) ∈ f−1(y)] > 1− α(n)

Hence, f is not (1− α(n))-one-way

Notation One Way Functions

Weak One Way Functions

Using A to invert f

Algorithm 20 (The inverter B)
Input: y ∈ {0,1}n.
Do (with fresh randomness) for np(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 21

For every n ∈ I, it holds that
Pry←f (Un)[B(y) ∈ f−1(y)] > 1− α(n)

Hence, f is not (1− α(n))-one-way

Notation One Way Functions

Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).

Notation One Way Functions

Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).

Notation One Way Functions

Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).

Notation One Way Functions

Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).

Notation One Way Functions

Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).

Notation One Way Functions

Weak One Way Functions

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the
“right" type.

Claim 22
Assume ∃ PPT A, p ∈ poly and an infinite set I ⊆ N s.t.

Pr
z←g(U t(n)

n)
[A(z) ∈ g−1(z)] ≥ 1/p(n) (2)

for every n ∈ I. Then ∃ PPT B and q ∈ poly s.t.

Pry←S [B(y) ∈ f−1(y)] ≥ 1/q(n) (3)

for every n ∈ I and S ⊆ {0,1}n with Pry←f (Un)[S] ≥ α(n)/2.

Namely, f does not have a (α(n)/2,1/q(n))-failing set.

Notation One Way Functions

Weak One Way Functions

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the
“right" type.

Claim 22
Assume ∃ PPT A, p ∈ poly and an infinite set I ⊆ N s.t.

Pr
z←g(U t(n)

n)
[A(z) ∈ g−1(z)] ≥ 1/p(n) (2)

for every n ∈ I. Then ∃ PPT B and q ∈ poly s.t.

Pry←S [B(y) ∈ f−1(y)] ≥ 1/q(n) (3)

for every n ∈ I and S ⊆ {0,1}n with Pry←f (Un)[S] ≥ α(n)/2.

Namely, f does not have a (α(n)/2,1/q(n))-failing set.

Notation One Way Functions

Weak One Way Functions

Algorithm B

Algorithm 23 (No failing-set algorithm B)
Input: y ∈ {0,1}n.

1 Choose z = (z1, . . . , zt)← g(U t
n) and i ← [t]

2 Set z ′ = (z1, . . . , zi−1, y , zi+1, . . . , zt)

3 Return A(z ′)i

Fix n ∈ I and a set S ⊆ {0,1}n of the right probability. We
analyze B’s success probability using the following (inefficient)
algorithm B∗:

Notation One Way Functions

Weak One Way Functions

Algorithm B

Algorithm 23 (No failing-set algorithm B)
Input: y ∈ {0,1}n.

1 Choose z = (z1, . . . , zt)← g(U t
n) and i ← [t]

2 Set z ′ = (z1, . . . , zi−1, y , zi+1, . . . , zt)

3 Return A(z ′)i

Fix n ∈ I and a set S ⊆ {0,1}n of the right probability. We
analyze B’s success probability using the following (inefficient)
algorithm B∗:

Notation One Way Functions

Weak One Way Functions

Algorithm B∗

Definition 24 (Bad)
For z ∈ Im(g) (the image of g), we set Bad(z) = 1 iff @i ∈ [t]
with zi ∈ S.

B∗ differ from B in the way it chooses z ′: in case Bad(z) = 1, it
sets z ′ = z. Otherwise, it sets i to an arbitrary index j ∈ [t] with
zj ∈ S, and sets z ′ as B does with respect to this i .

Claim 25

Pry←S [B∗(y) ∈ f−1(y)] ≥ 1
p(n) − neg(n),

and therefore Pry←S [B(y) ∈ f−1(y)] ≥ 1
t(n)p(n) − neg(n).

Notation One Way Functions

Weak One Way Functions

Algorithm B∗

Definition 24 (Bad)
For z ∈ Im(g) (the image of g), we set Bad(z) = 1 iff @i ∈ [t]
with zi ∈ S.

B∗ differ from B in the way it chooses z ′: in case Bad(z) = 1, it
sets z ′ = z. Otherwise, it sets i to an arbitrary index j ∈ [t] with
zj ∈ S, and sets z ′ as B does with respect to this i .

Claim 25

Pry←S [B∗(y) ∈ f−1(y)] ≥ 1
p(n) − neg(n),

and therefore Pry←S [B(y) ∈ f−1(y)] ≥ 1
t(n)p(n) − neg(n).

Notation One Way Functions

Weak One Way Functions

Claim 25 follows from the following two claims,

Claim 26

Prz←g(U t
n)

[Bad(z)] = neg(n)

Claim 27

Let Z = g(U t
n) and let Z ′ be the value of z ′ induced by a

random execution of B∗ on y ← (f (Un) | f (Un) ∈ S)).
Then Z and Z ′ are identically distributed.

Notation One Way Functions

Weak One Way Functions

The claims imply Claim 25.

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z) ∧ ¬Bad(z)]

(4)

Prz←g(U t
n)

[A(z) ∈ g−1(z)] (5)

≤ Pr[A(z) ∈ g−1(Z) ∧ ¬Bad(z)] + Pr[Bad(z)]

It follows that

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z)]− neg(n)

≥ 1
p(n)

− neg(n).

Notation One Way Functions

Weak One Way Functions

The claims imply Claim 25.

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z) ∧ ¬Bad(z)]

(4)

Prz←g(U t
n)

[A(z) ∈ g−1(z)] (5)

≤ Pr[A(z) ∈ g−1(Z) ∧ ¬Bad(z)] + Pr[Bad(z)]

It follows that

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z)]− neg(n)

≥ 1
p(n)

− neg(n).

Notation One Way Functions

Weak One Way Functions

The claims imply Claim 25.

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z) ∧ ¬Bad(z)]

(4)

Prz←g(U t
n)

[A(z) ∈ g−1(z)] (5)

≤ Pr[A(z) ∈ g−1(Z) ∧ ¬Bad(z)] + Pr[Bad(z)]

It follows that

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z)]− neg(n)

≥ 1
p(n)

− neg(n).

Notation One Way Functions

Weak One Way Functions

The claims imply Claim 25.

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z) ∧ ¬Bad(z)]

(4)

Prz←g(U t
n)

[A(z) ∈ g−1(z)] (5)

≤ Pr[A(z) ∈ g−1(Z) ∧ ¬Bad(z)] + Pr[Bad(z)]

It follows that

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z)]− neg(n)

≥ 1
p(n)

− neg(n).

Notation One Way Functions

Weak One Way Functions

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling
Zi :

1 Let β = Pry←f (Un)[S]. Set `i = 1 wp β and `i = 0 otherwise.
2 If `i = 1, let y ← (f (Un) | f (Un) ∈ S). Otherwise, set

y ← (f (Un) | f (Un) /∈ S).
It is easy to see that the above process is correct (samples Z
correctly).
Now all that B∗ does, is repeating Step 2 for one of the i ’s with
`i = 1 (if such exists)

Notation One Way Functions

Weak One Way Functions

Proof of Claim 26?
Proof of Claim 27: Consider the following process for sampling
Zi :

1 Let β = Pry←f (Un)[S]. Set `i = 1 wp β and `i = 0 otherwise.
2 If `i = 1, let y ← (f (Un) | f (Un) ∈ S). Otherwise, set

y ← (f (Un) | f (Un) /∈ S).
It is easy to see that the above process is correct (samples Z
correctly).

Now all that B∗ does, is repeating Step 2 for one of the i ’s with
`i = 1 (if such exists)

Notation One Way Functions

Weak One Way Functions

Proof of Claim 26?
Proof of Claim 27: Consider the following process for sampling
Zi :

1 Let β = Pry←f (Un)[S]. Set `i = 1 wp β and `i = 0 otherwise.
2 If `i = 1, let y ← (f (Un) | f (Un) ∈ S). Otherwise, set

y ← (f (Un) | f (Un) /∈ S).
It is easy to see that the above process is correct (samples Z
correctly).
Now all that B∗ does, is repeating Step 2 for one of the i ’s with
`i = 1 (if such exists)

Notation One Way Functions

Weak One Way Functions

Conclusion

Remark 28 (hardness amplification via parallel repetition)
Can we give a more efficient (secure) reduction?

Similar theorems for other cryptographic primitives (e.g.,
Captchas, general protocols)?
What properties of the weak OWF have we used in the
proof?

Notation One Way Functions

Weak One Way Functions

Conclusion

Remark 28 (hardness amplification via parallel repetition)
Can we give a more efficient (secure) reduction?
Similar theorems for other cryptographic primitives (e.g.,
Captchas, general protocols)?

What properties of the weak OWF have we used in the
proof?

Notation One Way Functions

Weak One Way Functions

Conclusion

Remark 28 (hardness amplification via parallel repetition)
Can we give a more efficient (secure) reduction?
Similar theorems for other cryptographic primitives (e.g.,
Captchas, general protocols)?
What properties of the weak OWF have we used in the
proof?

	Notation
	One Way Functions
	Length Preserving OWFs
	Weak One Way Functions

