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Notation I

For t ∈ N, let [t ] := {1, . . . , t}.
Given a string x ∈ {0,1}∗ and 0 ≤ i < j ≤ |x |, let xi,...,j
stands for the substring induced by taking the i , . . . , j bit of
x (i.e., x [i] . . . , x [j]).
Given a function f defined over a set U , and a set S ⊆ U ,
let f (S) := {f (x) : x ∈ S}, and for y ∈ f (U) let
f−1(y) := {x ∈ U : f (x) = y}.
poly stands for the set of all polynomials.
The worst-case running-time of a polynomial-time
algorithm on input x , is bounded by p(|x |) for some
p ∈ poly.
A function is polynomial-time computable, if there exists a
polynomial-time algorithm to compute it.
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Notation II

PPT stands for probabilistic polynomial-time algorithms.

A function µ : N 7→ [0,1] is negligible, denoted
µ(n) = neg(n), if for any p ∈ poly there exists n′ ∈ N with
µ(n) ≤ 1/p(n) for any n > n′.
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Distribution and random variables I

The support of a distribution P over a finite set U , denoted
Supp(P), is defined as {u ∈ U : P(u) > 0}.
Given a distribution P and en event E with PrP [E ] > 0, we
let (P | E) denote the conditional distribution P given E
(i.e., (P | E)(x) = D(x)∧E

PrP [E ] ).

For t ∈ N, let let Ut denote a random variable uniformly
distributed over {0,1}t .
Given a random variable X , we let x ← X denote that x is
distributed according to X (e.g., Prx←X [x = 7]).
Given a final set S, we let x ← S denote that x is uniformly
distributed in S.
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Distribution and random variables II

We use the convention that when a random variable
appears twice in the same expression, it refers to a single
instance of this random variable. For instance,
Pr[X = X ] = 1 (regardless of the definition of X ).

Given distribution P over U and t ∈ N, we let P t over U t be
defined by Dt (x1, . . . , xt ) = Πi∈[t]D(xi).

Similarly, given a random variable X , we let X t denote the
random variable induced by t independent samples from
X .
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One-Way Functions

Definition 1 (One-Way Functions (OWFs))
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is one-way, if for any PPT A

Pry←f (Un)[A(1n, y) ∈ f−1(y)] = neg(n)

Un: a random variable uniformly distributed over
{0,1}n

polynomial-time computable: there exists a polynomial-time
algorithm F , such that F (x) = f (x) for every
x ∈ {0,1}∗

PPT : probabilistic polynomial-time algorithm
neg: a function µ : N 7→ [0,1] is a negligible function of

n, denoted µ(n) = neg(n), if for any p ∈ poly there
exists n′ ∈ N such that g(n) < 1/p(n) for all n > n′

We will typically omit 1n from the parameter list of A
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1 Is this the right definition?
Asymptotic
Efficiently computable
On the average
Only against PPT ’s

2 (most) Crypto implies OWFs
3 Do OWFs imply Crypto?
4 Where do we find them
5 Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function f : {0,1}∗ 7→ {0,1}∗ is
one-way, if for any polynomial-size family of circuits {Cn}n∈N

Pry←f (Un)[Cn(y) ∈ f−1(y)] = neg(n)
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Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)
A function f : {0,1}∗ 7→ f : {0,1}∗ is length preserving, if
|f (x)| = |x | for any x ∈ {0,1}∗

Theorem 4

Assume that OWFs exit, then there exist length-preserving
OWFs

Proof idea: use the assumed OWF to create a length
preserving one
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Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)
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Length Preserving OWFs

Partial domain functions

Definition 5 (Partial domain functions)

For m, ` : N 7→ N, let h : {0,1}m(n) 7→ {0,1}`(n) denote a function
defined over input lengths in {m(n)}n∈N, and maps strings of
length m(n) to strings of length `(n).

The definition of one-wayness naturally extends to such
functions.
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Length Preserving OWFs

OWFs imply Length Preserving OWFs cont.

Let f : {0,1}∗ 7→ {0,1}∗ be a OWF, let p ∈ poly be a bound on
its computing-time and assume wlg. that p is monotony
increasing (can we?).

Construction 6 (the length preserving function)

Define g : {0,1}p(n) 7→ {0,1}p(n) as

g(x) = f (x1,...,n),0p(n)−|f (x1,...,n)|

Note that g is length preserving and efficient (why?).

Claim 7
g is one-way.

How can we prove that g is one-way?
Answer: using reduction
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Length Preserving OWFs

Proving that g is one-way

Proof:
Assume that g is not one-way. Namely, there exists PPT A a
q ∈ poly and an infinite I ⊆ {p(n) : n ∈ N}, with

Pry←g(Un)[A(y) ∈ g−1(y)] > 1/q(n) (1)

for any n ∈ I.

We would like to use A for inverting f .
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Length Preserving OWFs

Algorithm 8 (The inverter B)
Input: 1n and y ∈ {0,1}∗.

1 Let x = A(1p(n), y ,0p(n)−|y |).
2 Return x1,...,n.

Claim 9
Let I ′ := {n ∈ N : p(n) ∈ I}. Then

1 I ′ is infinite
2 For any n ∈ I ′, it holds that

Pry←g(Un)[B(y) ∈ f−1(y)] > 1/q(p(n)).

in contradiction to the assumed one-wayness of f .
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Length Preserving OWFs

Conclusion

Remark 10
We directly related the hardness of f to that of g
The reduction is not “security preserving"
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Length Preserving OWFs

From partial domain functions to all-length functions

Construction 11

Given a function f : {0,1}m(n) 7→ {0,1}`(n),
fall : {0,1}∗ 7→ {0,1}∗ as

fall(x) = f (x1,...,k(n)),0n−k(n)

where n = |x | and k(n) := max{m(n′) ≤ n : n′ ∈ N}.

Claim 12
Assume that f is a one-way function and that m is monotone,
polynomial-time commutable an satisfies m(n+1)

m(n) ≤ p(n) for
some p ∈ poly, then fall is a one-way function. Further, if f is
length preserving, then so is fall .

Proof: ?
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Weak One Way Functions

Weak One Way Functions

Definition 13 (weak one-way functions)
A polynomial-time computable function f : {0,1}∗ 7→ f : {0,1}∗
is α-one-way, if

Pry←f (Un)[A(1n, y) ∈ f−1(y)] ≤ α(n)

for any PPT A and large enough n ∈ N.

1 (strong) OWF according to Definition 1, are
neg(n)-one-way according to the above definition

2 Examples
3 Can we “amplify" weak OWF to strong ones?
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Weak One Way Functions

Strong to weak OWFs

Claim 14
Assume there exists OWFs, then there exist functions that are
2
3 -one-way, but not (strong) one-way

Proof: let f be a OWF. Define g(x) = (1, f (x)) if x1 = 1, and 0
otherwise.
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Weak One Way Functions

Weak to Strong OWFs

Theorem 15
Assume there exists (1− α)-weak OWFs with α(n) > 1/p(n)
for some p ∈ poly, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (can we do
so?)

Construction 16 (g – the strong one-way function)
Let t : N 7→ N be a polynomial-time computable function
satisfying t(n) ∈ ω(log n/α(n)). Define
g : ({0,1}n)t(n) 7→ ({0,1}n)t(n) as

g(x1, . . . , xt ) = f (x1), . . . , f (xt )

Claim 17
g is one-way.
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Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n )
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.
Unfortunately, we can assume none of the above.



Notation One Way Functions

Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n )
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.

Unfortunately, we can assume none of the above.



Notation One Way Functions

Weak One Way Functions

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to
attacks each of the t outputs of g independently. Then

Pr
y←g(U t(n)

n )
[A(y) ∈ g−1(y)] ≤ (1−α(n))t(n) ≤ e−ω(log n) = neg(n)

A less naive approach would be to assume that A goes over
output sequentially.
Unfortunately, we can assume none of the above.



Notation One Way Functions

Weak One Way Functions

Failing Sets

Definition 18 (failing set)

A function f : {0,1}n 7→ {0,1}`(n) has a (δ(n), ε(n))-failing set
for A, if for large enough n, exists set S(n) ⊆ {0,1}`(n) with

1 Pr[f (Un) ∈ S(n)] ≥ δ(n), and
2 Pr[A(y) ∈ f−1(y)] < ε(n), for every y ∈ S(n)

Claim 19
Let f be a (1− α)-OWF. Then f has (α(n)/2,1/p(n))-failing set
for any PPT A and p ∈ poly.

Proof: Assume ∃ PPT A, a p ∈ poly and an infinite set I ⊆ N
such that for every n ∈ I, ∃L(n) ⊆ {0,1}n with

1 Pr[f (Un) ∈ L(n)] ≥ 1− α(n)/2, and
2 Pr[A(y) ∈ f−1(y)] ≥ 1/p(n), for every y ∈ L(n)

We’ll use A to contradict the hardness of f .
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Weak One Way Functions

Using A to invert f

Algorithm 20 (The inverter B)
Input: y ∈ {0,1}n.
Do (with fresh randomness) for np(n) times:
If x = A(y) ∈ f−1(y), return x

Clearly, B is a PPT

Claim 21

For every n ∈ I, it holds that
Pry←f (Un)[B(y) ∈ f−1(y)] > 1− α(n)

Hence, f is not (1− α(n))-one-way
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Weak One Way Functions

Proof of Claim 21(all probabilities below are also over
y ← f (Un)):

Pr[B(y) ∈ f−1(y)]

≥ Pr[B(y) ∈ f−1(y) ∧ y ∈ L(n)]

= Pr[y ∈ L(n)] · Pr[B(y) ∈ f−1(y) | y ∈ L(n)]

≥ (1− α(n)/2) · (1− (1− 1/p(n))np(n))

≥ (1− α(n)/2) · (1− 2−n) > 1− α(n).
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Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the
“right" type.

Claim 22
Assume ∃ PPT A, p ∈ poly and an infinite set I ⊆ N s.t.

Pr
z←g(U t(n)

n )
[A(z) ∈ g−1(z)] ≥ 1/p(n) (2)

for every n ∈ I. Then ∃ PPT B and q ∈ poly s.t.

Pry←S [B(y) ∈ f−1(y)] ≥ 1/q(n) (3)

for every n ∈ I and S ⊆ {0,1}n with Pry←f (Un)[S] ≥ α(n)/2.

Namely, f does not have a (α(n)/2,1/q(n))-failing set.
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Algorithm B

Algorithm 23 (No failing-set algorithm B)
Input: y ∈ {0,1}n.

1 Choose z = (z1, . . . , zt )← g(U t
n) and i ← [t ]

2 Set z ′ = (z1, . . . , zi−1, y , zi+1, . . . , zt )

3 Return A(z ′)i

Fix n ∈ I and a set S ⊆ {0,1}n of the right probability. We
analyze B’s success probability using the following (inefficient)
algorithm B∗:
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Algorithm B∗

Definition 24 (Bad)
For z ∈ Im(g) (the image of g), we set Bad(z) = 1 iff @i ∈ [t ]
with zi ∈ S.

B∗ differ from B in the way it chooses z ′: in case Bad(z) = 1, it
sets z ′ = z. Otherwise, it sets i to an arbitrary index j ∈ [t ] with
zj ∈ S, and sets z ′ as B does with respect to this i .

Claim 25

Pry←S [B∗(y) ∈ f−1(y)] ≥ 1
p(n) − neg(n),

and therefore Pry←S [B(y) ∈ f−1(y)] ≥ 1
t(n)p(n) − neg(n).
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Claim 25 follows from the following two claims,

Claim 26

Prz←g(U t
n)

[Bad(z)] = neg(n)

Claim 27

Let Z = g(U t
n) and let Z ′ be the value of z ′ induced by a

random execution of B∗ on y ← (f (Un) | f (Un) ∈ S)).
Then Z and Z ′ are identically distributed.
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The claims imply Claim 25.

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z) ∧ ¬Bad(z)]

(4)

Prz←g(U t
n)

[A(z) ∈ g−1(z)] (5)

≤ Pr[A(z) ∈ g−1(Z ) ∧ ¬Bad(z)] + Pr[Bad(z)]

It follows that

Pry←S [B∗(y) ∈ f−1(y)] ≥ Prz←g(U t
n)

[A(z) ∈ g−1(z)]− neg(n)

≥ 1
p(n)

− neg(n).
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Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling
Zi :

1 Let β = Pry←f (Un)[S]. Set `i = 1 wp β and `i = 0 otherwise.
2 If `i = 1, let y ← (f (Un) | f (Un) ∈ S). Otherwise, set

y ← (f (Un) | f (Un) /∈ S).
It is easy to see that the above process is correct (samples Z
correctly).
Now all that B∗ does, is repeating Step 2 for one of the i ’s with
`i = 1 (if such exists)
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Conclusion

Remark 28 (hardness amplification via parallel repetition)
Can we give a more efficient (secure) reduction?

Similar theorems for other cryptographic primitives (e.g.,
Captchas, general protocols)?
What properties of the weak OWF have we used in the
proof?
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