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Function Families
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function families

function families

1 F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}
2 We write F = {Fn : {0,1}m(n) 7→ {0,1}`(n)}
3 If m(n) = `(n) = n, we omit it from the notation
4 We identify function with their description
5 The rv Fn is uniformly distributed over Fn
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efficient function families

Definition 1 (efficient function family)

An ensemble of function families F = {Fn}n∈N is efficient, if the
following hold:
Samplable. F is samplable in polynomial-time: there exists a

PPT that given 1n, outputs (the description of) a
uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that
given x ∈ {0,1}n and (a description of) f ∈ Fn,
outputs f (x).
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random functions

Definition 2 (random functions)
For m, ` ∈ N, we let Πm,` consist of all functions from {0,1}m to
{0,1}`.

It takes 2m · ` bits to describe an element inside Πm,`.
We sometimes think of π ∈ Πm,` as a random string of
length 2m · `.
Πn = Πn,n
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pseudorandom functions

Definition 3 (pseudorandom functions)

A function family ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is
pseudorandom, if∣∣∣Pr[DFn (1n) = 1]− Pr[DΠm(n),`(n)(1n) = 1

∣∣∣ = neg(n),

for any oracle-aided PPT D.

1 Suffices to consider `(n) = n
2 Easy to construct (with no assumption) for m(n) = log n

and ` ∈ poly
3 PRF easily imply a PRG
4 Pseudorandom permutations (PRPs)
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Section 2

PRF from OWF



Function Families PRF from OWF PRP from PRF Applications

the construction

the construction

Construction 4

Let g : {0,1}n 7→ {0,1}2n. Let g0(s) = g(s)1,...,n and
g1(s) = g(s)n+1,...,2n. For s and x ∈ {0,1}∗, let fs be defined as

fs(x) = gxn (. . . (gx2(gx1(s))))

Let Fn = {fs : s ∈ {0,1}n} and F = {Fn}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then F is a PRF.

Corollary 6
OWFs imply PRFs.



Function Families PRF from OWF PRP from PRF Applications

the construction

the construction

Construction 4

Let g : {0,1}n 7→ {0,1}2n. Let g0(s) = g(s)1,...,n and
g1(s) = g(s)n+1,...,2n. For s and x ∈ {0,1}∗, let fs be defined as

fs(x) = gxn (. . . (gx2(gx1(s))))

Let Fn = {fs : s ∈ {0,1}n} and F = {Fn}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then F is a PRF.

Corollary 6
OWFs imply PRFs.



Function Families PRF from OWF PRP from PRF Applications

the construction

the construction

Construction 4

Let g : {0,1}n 7→ {0,1}2n. Let g0(s) = g(s)1,...,n and
g1(s) = g(s)n+1,...,2n. For s and x ∈ {0,1}∗, let fs be defined as

fs(x) = gxn (. . . (gx2(gx1(s))))

Let Fn = {fs : s ∈ {0,1}n} and F = {Fn}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then F is a PRF.

Corollary 6
OWFs imply PRFs.



Function Families PRF from OWF PRP from PRF Applications

the construction

the construction

Construction 4

Let g : {0,1}n 7→ {0,1}2n. Let g0(s) = g(s)1,...,n and
g1(s) = g(s)n+1,...,2n. For s and x ∈ {0,1}∗, let fs be defined as

fs(x) = gxn (. . . (gx2(gx1(s))))

Let Fn = {fs : s ∈ {0,1}n} and F = {Fn}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then F is a PRF.

Corollary 6
OWFs imply PRFs.



Function Families PRF from OWF PRP from PRF Applications

the construction

the construction

Construction 4

Let g : {0,1}n 7→ {0,1}2n. Let g0(s) = g(s)1,...,n and
g1(s) = g(s)n+1,...,2n. For s and x ∈ {0,1}∗, let fs be defined as

fs(x) = gxn (. . . (gx2(gx1(s))))

Let Fn = {fs : s ∈ {0,1}n} and F = {Fn}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then F is a PRF.

Corollary 6
OWFs imply PRFs.



Function Families PRF from OWF PRP from PRF Applications

Proof Idea

Proof Idea

Easy to prove for input of length 2.

Observation: D = (g(g0(Un)),g(g1(Un))) is
pseudorandom:
Proof: D′ = (g(U(0)

n ),g(U1
n )) ≈c U4n and D ≈c D′.

Hence we can handle input of length 2
Extend to longer inputs?
We show that an efficient sample from the truth table of
f ← Fn, is computationally indistinguishable from that of
π ← Πn,n.
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Actual proof

Actual proof

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I and fix n ∈ N

Let t = t(n) ∈ poly be a bound on the running time of D(1n).
We use D to construct a PPT D′ such that∣∣Pr[D′(U t

2n) = 1]− Pr[D′(g(Un)t ) = 1
∣∣ > 1

np(n
,

where U t
2n = U(1)

2n , . . . ,U
(t(n))
2n and

g(Un)t = g(U(1)
n ), . . . ,g(U(t(n))

n ).
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Actual proof

The hybrid

Let g and f be as in the definition of Fn

Definition 7
For k ∈ {0, . . . ,n}, let Hk = {hπ : {0,1}n 7→ {0,1}n : π ∈ Πk ,n},
where hπ(x) = fπ(x1,...,k )(xk+1,...,n)

fy (λ) = y
Π0,n = {0,1}n, and for π ∈ Π0,n let π(λ) = π

Note that H0 = Fn and Hn = Πn,n

Can we emulate Hk? We emulate if from D’s point of view.

We present efficient “function family" Ok = {Os1,...,st

k } s.t.

DO
Ut

2n
k (1n) ≡ DHk (1n)

DOg(Un)t

k (1n) ≡ DHk−1 (1n)

for any k ∈ [n], where HK is uniformly sampled from Hk .



Function Families PRF from OWF PRP from PRF Applications

Actual proof

The hybrid

Let g and f be as in the definition of Fn

Definition 7
For k ∈ {0, . . . ,n}, let Hk = {hπ : {0,1}n 7→ {0,1}n : π ∈ Πk ,n},
where hπ(x) = fπ(x1,...,k )(xk+1,...,n)

fy (λ) = y
Π0,n = {0,1}n, and for π ∈ Π0,n let π(λ) = π

Note that H0 = Fn and Hn = Πn,n

Can we emulate Hk? We emulate if from D’s point of view.

We present efficient “function family" Ok = {Os1,...,st

k } s.t.

DO
Ut

2n
k (1n) ≡ DHk (1n)

DOg(Un)t

k (1n) ≡ DHk−1 (1n)

for any k ∈ [n], where HK is uniformly sampled from Hk .



Function Families PRF from OWF PRP from PRF Applications

Actual proof

The hybrid

Let g and f be as in the definition of Fn

Definition 7
For k ∈ {0, . . . ,n}, let Hk = {hπ : {0,1}n 7→ {0,1}n : π ∈ Πk ,n},
where hπ(x) = fπ(x1,...,k )(xk+1,...,n)

fy (λ) = y
Π0,n = {0,1}n, and for π ∈ Π0,n let π(λ) = π

Note that H0 = Fn and Hn = Πn,n

Can we emulate Hk? We emulate if from D’s point of view.

We present efficient “function family" Ok = {Os1,...,st

k } s.t.

DO
Ut

2n
k (1n) ≡ DHk (1n)

DOg(Un)t

k (1n) ≡ DHk−1 (1n)

for any k ∈ [n], where HK is uniformly sampled from Hk .



Function Families PRF from OWF PRP from PRF Applications

Actual proof

The hybrid

Let g and f be as in the definition of Fn

Definition 7
For k ∈ {0, . . . ,n}, let Hk = {hπ : {0,1}n 7→ {0,1}n : π ∈ Πk ,n},
where hπ(x) = fπ(x1,...,k )(xk+1,...,n)

fy (λ) = y
Π0,n = {0,1}n, and for π ∈ Π0,n let π(λ) = π

Note that H0 = Fn and Hn = Πn,n

Can we emulate Hk?

We emulate if from D’s point of view.

We present efficient “function family" Ok = {Os1,...,st

k } s.t.

DO
Ut

2n
k (1n) ≡ DHk (1n)

DOg(Un)t

k (1n) ≡ DHk−1 (1n)

for any k ∈ [n], where HK is uniformly sampled from Hk .



Function Families PRF from OWF PRP from PRF Applications

Actual proof

The hybrid

Let g and f be as in the definition of Fn

Definition 7
For k ∈ {0, . . . ,n}, let Hk = {hπ : {0,1}n 7→ {0,1}n : π ∈ Πk ,n},
where hπ(x) = fπ(x1,...,k )(xk+1,...,n)

fy (λ) = y
Π0,n = {0,1}n, and for π ∈ Π0,n let π(λ) = π

Note that H0 = Fn and Hn = Πn,n

Can we emulate Hk? We emulate if from D’s point of view.

We present efficient “function family" Ok = {Os1,...,st

k } s.t.

DO
Ut

2n
k (1n) ≡ DHk (1n)

DOg(Un)t

k (1n) ≡ DHk−1 (1n)

for any k ∈ [n], where HK is uniformly sampled from Hk .



Function Families PRF from OWF PRP from PRF Applications

Actual proof

completing the proof

Let D′(y) return DOy
k (1n) for k uniformly chosen in [n].

Hence∣∣Pr[D′(U t
2n = 1]

∣∣− Pr[D′(g(Un)t ) = 1]

=

∣∣∣∣∣
n∑

k=1

1
n
· Pr[DO

Ut
2n

k (1n) = 1]−
n∑

k=1

1
n
· Pr[DOg(Un)t

k (1n) = 1]

∣∣∣∣∣
=

1
n

∣∣∣∣∣
n∑

k=1

Pr[DHk (1n) = 1]−
n∑

k=1

Pr[DHk−1(1n) = 1]

∣∣∣∣∣
=

1
n

∣∣∣Pr[DHn (1n) = 1]− Pr[DH0(1n) = 1]
∣∣∣ =

1
np(n)
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Actual proof

The family Ok

Ok := {Os1,...,st

k : s1, . . . , st ∈ {0,1}n × {0,1}n}.

Algorithm 8 (Os1,...,st

k )

On the i ’th query x i ∈ {0,1}n:
1 If x` with x`1,...,k−1 = x i

1,...,k−1 was previously asked,
set z = s`xk

(where ` is the minimal such index).
Otherwise, set z = si

xk
.

2 Return fz(xk+1,...,n)

Ok is stateful.

We need to prove that DO
Ut

2n
k (1n) ≡ DHk (1n) and

DOg(Un)t

k (1n) ≡ DHk−1(1n).
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Actual proof

DO
Ut

2n
k (1n) ≡ DHk (1n)

Proposition 9

For any `,m ∈ N and any algorithm A, it holds that
AΠ`,m ≡ AB`,m , where the stateful random algorithm B`,m
answers identical queries with the same answer, and answers
new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?
Let Õk be the variant that returns z (and not fxk+1,...,n (z)) and let
D̃k be the algorithm that implements D using Õk (by computing
fxk+1,...,n (z) by itself).
By Proposition 9

DO
Ut

2n
k (1n) ≡ D̃Õ

Ut
2n

k
k (1n) ≡ D̃πk,n

k (1n) ≡ DHk (1n) (2)
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Ut
2n

k
k (1n) ≡ D̃πk,n

k (1n) ≡ DHk (1n) (2)



Function Families PRF from OWF PRP from PRF Applications
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new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?

Let Õk be the variant that returns z (and not fxk+1,...,n (z)) and let
D̃k be the algorithm that implements D using Õk (by computing
fxk+1,...,n (z) by itself).
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Actual proof

DOg(Un)t

k (1n) ≡ DHk−1(1n)

It holds that

DOg(Un)t

k )(1n) ≡ DO
Ut

2n
k−1(1n) (3)

Hence, by Equation (2)
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k (1n) ≡ DHk−1(1n)
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Actual proof

DOg(Un)t

k (1n) ≡ DHk−1(1n)

It holds that

DOg(Un)t

k )(1n) ≡ DO
Ut

2n
k−1(1n) (3)

Hence, by Equation (2)

DOg(Un)t

k (1n) ≡ DHk−1(1n)



Function Families PRF from OWF PRP from PRF Applications

Section 3

PRP from PRF
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Pseudorandom permutations

Let Π̃n be the set of all permutations over {0,1}n.

Definition 10 (pseudorandom permutations)

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a
pseudorandom permutation, if∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (4)

for any oracle-aided PPT D

Equation (4) holds for any PRF
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Construction

Construction 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LR(F) = {LR(Fn) : {0,1}2n 7→ {0,1}2n}, where
LR(Fn) = {LR(f ) : f ∈ Fn} and LR(f )(`, r) = (r , f (r)⊕ `).

For i ∈ N, let LRi(F) be the i ’th iteration of LR(F).

LR(F) is always a permutation family, and is efficient if F is.

Theorem 12 (Luby-Rackoff)
Assuming that F is a PRF, then LR3(F) is a PRP

It suffices to prove the the following holds for any n ∈ N (why?)

Claim 13

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ≤ 4·q2

2n ,
for any q-query algorithm D.
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Section 4

Applications
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general paradigm

Design a scheme assuming that you have random functions,
and the realize them using PRF.
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Private-key Encryption

Private-key Encryption

Construction 14 (PRF-based encryption)
Given an (efficient) PRF F, define the encryption scheme
(Gen,Enc,Dec)) se:
Key generation Gen(1n) returns k ← Fn

Encryption Enck (m) returns Un, k(Un)⊕m
Decryption Deck (c = (c1, cn)) returns k(c1)⊕ c2

Advantages over the PRG based scheme?
Proof of security
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