Foundation of Cryptography (0368-4162-01), Lecture 4 Pseudorandom Functions

Iftach Haitner, Tel Aviv University

November 29, 2011

Section 1

Function Families

Function Families ●○○○	PRF from OWF	PRP from PRF	Applications
function families			
function familias			

1
$$\mathbb{F} = \{\mathbb{F}_n\}_{n \in \mathbb{N}}, \text{ where } \mathbb{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$$

2 We write
$$\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$$

3 If
$$m(n) = \ell(n) = n$$
, we omit it from the notation

- We identify function with their description
- **(**) The rv F_n is uniformly distributed over \mathbb{F}_n

Function Families ○●○○	PRF from OWF	PRP from PRF	Applications O
efficient function families			

efficient function families

Definition 1 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if the following hold:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^{*n*}, outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

	00000000	0
random functions		

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^{\ell}$.

Function Families ○○●○	PRF from OWF	PRP from PRF	Applications o
random functions			
random function	s		

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^{\ell}$.

• It takes $2^m \cdot \ell$ bits to describe an element inside $\Pi_{m,\ell}$.

random functions			
random functions			
Function Families	PRF from OWF	PRP from PRF	Applications o

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^{\ell}$.

- It takes $2^m \cdot \ell$ bits to describe an element inside $\Pi_{m,\ell}$.
- We sometimes think of π ∈ Π_{m,ℓ} as a random string of length 2^m · ℓ.

random functions			
random functions			
Function Families	PRF from OWF	PRP from PRF	Applications o

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^{\ell}$.

- It takes $2^m \cdot \ell$ bits to describe an element inside $\prod_{m,\ell}$.
- We sometimes think of π ∈ Π_{m,ℓ} as a random string of length 2^m · ℓ.
- $\Pi_n = \Pi_{n,n}$

Function Families ○○○●	PRF from OWF	PRP from PRF	Applications o
pseudorandom functions			

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\prod_{m(n),\ell(n)}}(1^n) = 1| = \operatorname{neg}(n),$$

Function Families ○○○●	PRF from OWF	PRP from PRF	Applications o
pseudorandom functions			

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if

$$|\Pr[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\prod_{m(n), \ell(n)}}(1^n) = 1| = \operatorname{neg}(n),$$

for any oracle-aided PPT D.

1 Suffices to consider $\ell(n) = n$

Function Families ○○○●	PRF from OWF	PRP from PRF	Applications o
pseudorandom functions			

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \mathsf{Pr}[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

- Suffices to consider $\ell(n) = n$
- 2 Easy to construct (with no assumption) for $m(n) = \log n$ and $\ell \in \text{poly}$

Function Families ○○○●	PRF from OWF	PRP from PRF	Applications o
pseudorandom functions			

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \mathsf{Pr}[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

- **()** Suffices to consider $\ell(n) = n$
- ② Easy to construct (with no assumption) for m(n) = log n and ℓ ∈ poly
- PRF easily imply a PRG

Function Families ○○○●	PRF from OWF	PRP from PRF	Applications o
pseudorandom functions			

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \mathsf{Pr}[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

- **()** Suffices to consider $\ell(n) = n$
- ② Easy to construct (with no assumption) for m(n) = log n and ℓ ∈ poly
- PRF easily imply a PRG
- Pseudorandom permutations (PRPs)

PRF from OWF

PRP from PRF

Applications

Section 2

PRF from OWF

Function Families	PRF from OWF ●○○○○○○○	PRP from PRF	Applications o
the construction			
the construction			

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Function Families	PRF from OWF ●○○○○○○	PRP from PRF	Applications o
the construction			
the construction			

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and
 $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as
 $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$
Let $\mathbb{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

Function Families	PRF from OWF ●○○○○○○	PRP from PRF	Applications o
the construction			
the construction			

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and
 $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as
 $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$
Let $\mathbb{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

the construction			
the construction			
Function Families	PRF from OWF ●○○○○○○○	PRP from PRF	Applications o

Let $g: \{0,1\}^n \mapsto \{0,1\}^{2n}$. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$ Let $\mathbb{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathbb{F} is a PRF.

the construction			
the construction			
Function Families	PRF from OWF ●○○○○○○○	PRP from PRF	Applications o

Let $g: \{0,1\}^n \mapsto \{0,1\}^{2n}$. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$ Let $\mathbb{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathbb{F} is a PRF.

Corollary 6

OWFs imply PRFs.

Function Families	PRF from OWF ○●○○○○○○	PRP from PRF	Applications o
Proof Idea			
Proof Idea			

• Easy to prove for input of length 2.

• Easy to prove for input of length 2. Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

 Easy to prove for input of length 2. Observation: D = (g(g₀(U_n)), g(g₁(U_n))) is pseudorandom: Proof: D' = (g(U_n⁽⁰⁾), g(U_n¹)) ≈_c U_{4n} and D ≈_c D'.

- Easy to prove for input of length 2. Observation: D = (g(g₀(Uₙ)), g(g₁(Uₙ))) is pseudorandom: Proof: D' = (g(Uₙ⁽⁰⁾), g(Uₙ)) ≈_c U₄n and D ≈_c D'.
- Hence we can handle input of length 2
- Extend to longer inputs?

- Easy to prove for input of length 2. Observation: D = (g(g₀(Uₙ)), g(g₁(Uₙ))) is pseudorandom: Proof: D' = (g(Uₙ⁽⁰⁾), g(Uₙ)) ≈_c U₄n and D ≈_c D'.
- Hence we can handle input of length 2
- Extend to longer inputs?
- We show that an efficient sample from the *truth table* of $f \leftarrow \mathbb{F}_n$, is computationally indistinguishable from that of $\pi \leftarrow \Pi_{n,n}$.

Assume
$$\exists \text{ PPT } D, p \in \text{poly and infinite set } \mathcal{I} \subseteq \mathbb{N} \text{ with}$$

 $\left| \Pr[D^{F_n}(1^n) = 1] - \Pr[D^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)}, \quad (1)$

for any $n \in \mathcal{I}$ and fix $n \in \mathbb{N}$

Assume \exists PPT D, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left|\Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1]\right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$ and fix $n \in \mathbb{N}$ Let $t = t(n) \in$ poly be a bound on the running time of D(1^{*n*}). We use D to construct a PPT D' such that

$$\left|\Pr[\mathsf{D}'(U_{2n}^t)=1]-\Pr[\mathsf{D}'(g(U_n)^t)=1\right|>\frac{1}{np(n)},$$

where $U_{2n}^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t(n))}$ and $g(U_n)^t = g(U_n^{(1)}), \dots, g(U_n^{(t(n))})$.

Function Families	PRF from OWF	PRP from PRF	Applications O
Actual proof			
The hybrid			

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$,
where $h_\pi(x) = f_{\pi(x_1, ..., k)}(x_{k+1, ..., n})$

Function Families	PRF from OWF	PRP from PRF	Applications O
Actual proof			
The hybrid			

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$,
where $h_\pi(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
• $f_y(\lambda) = y$

•
$$\Pi_{0,n} = \{0,1\}^n$$
, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$

Function Families	PRF from OWF	PRP from PRF	Applications O
Actual proof			
The hybrid			

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$,
where $h_\pi(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
• $f_y(\lambda) = y$

•
$$\Pi_{0,n} = \{0,1\}^n$$
, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$

• Note that
$$\mathcal{H}_0 = \mathbb{F}_n$$
 and $\mathcal{H}_n = \prod_{n,n}$

Function Families	PRF from OWF	PRP from PRF	Applications O
Actual proof			
The hybrid			

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$,
where $h_\pi(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$

•
$$f_y(\lambda) = y$$

•
$$\Pi_{0,n} = \{0,1\}^n$$
, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$

• Note that
$$\mathcal{H}_0 = \mathbb{F}_n$$
 and $\mathcal{H}_n = \prod_{n,n}$

• Can we emulate \mathcal{H}_k ?

Function Families	PRF from OWF ○○○●○○○○	PRP from PRF	Applications o
Actual proof			
The hybrid			

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$,
where $h_\pi(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
• $f_k(\lambda) = v$

•
$$\Pi_{0,n} = \{0,1\}^n$$
, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda)$

- Note that $\mathcal{H}_0 = \mathbb{F}_n$ and $\mathcal{H}_n = \prod_{n,n}$
- Can we emulate \mathcal{H}_k ? We emulate if from D's point of view.

 $= \pi$

• We present efficient "function family" $\mathcal{O}_k = \{O_k^{s_1,...,s^t}\}$ s.t.

•
$$\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

• $\mathsf{D}^{O_k^{g(o_n)}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$

for any $k \in [n]$, where $H_{\mathcal{K}}$ is uniformly sampled from \mathcal{H}_k .

Function Families	PRF from OWF ○○○○●○○○	PRP from PRF	Applications o
Actual proof			
completing the proc	of		

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n].

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n]. Hence $|\Pr[D'(U_{2n}^t = 1)| - \Pr[D'(g(U_n)^t) = 1]$ $= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[D^{O_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[D^{O_k^{g(U_n)^t}}(1^n) = 1] \right|$

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n]. Hence $|\Pr[D'(U_{2n}^t = 1)| - \Pr[D'(g(U_n)^t) = 1]$ $= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[D^{O_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[D^{O_k^{g(U_n)^t}}(1^n) = 1] \right|$ $= \frac{1}{n} \left| \sum_{k=1}^n \Pr[D^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[D^{H_{k-1}}(1^n) = 1] \right|$

Let D'(y) return $D_{k}^{O_{k}^{y}}(1^{n})$ for k uniformly chosen in [n]. Hence $|\Pr[D'(U_{2n}^t = 1)| - \Pr[D'(g(U_n)^t) = 1]|$ $= \left| \sum_{k=1}^{n} \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^{n} \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) = 1] \right|$ $= \frac{1}{n} \left| \sum_{k=1}^{n} \Pr[\mathsf{D}^{H_{k}}(1^{n}) = 1] - \sum_{k=1}^{n} \Pr[\mathsf{D}^{H_{k-1}}(1^{n}) = 1] \right|$ $= \frac{1}{n} \left| \Pr[\mathsf{D}^{H_n}(1^n) = 1] - \Pr[\mathsf{D}^{H_0}(1^n) = 1] \right| = \frac{1}{np(n)} \Box$

Function Families	PRF from OWF ○○○○○●○○	PRP from PRF	Applications o
Actual proof			
The family \mathcal{O}_k			

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,\ldots,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

• If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}}^{i}$.

2 Return
$$f_z(x_{k+1,...,n})$$

Function Families	PRF from OWF ○○○○○●○○	PRP from PRF	Applications o
Actual proof			
The family \mathcal{O}_k			

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,\ldots,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

• If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}}^{i}$.

2 Return
$$f_z(x_{k+1,...,n})$$

 \mathcal{O}_k is stateful.

Function Families	PRF from OWF ○○○○○●○○	PRP from PRF	Applications o
Actual proof			
The family \mathcal{O}_k			

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

• If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}}^{i}$.

2 Return
$$f_z(x_{k+1,...,n})$$

\mathcal{O}_k is stateful.

We need to prove that $D^{O_k^{U_{2n}^t}}(1^n) \equiv D^{H_k}(1^n)$ and $D^{O_k^{g(U_n)^t}}(1^n) \equiv D^{H_{k-1}}(1^n)$.

Function Families	PRF from OWF ○○○○○○●○	PRP from PRF	Applications o
Actual proof			
$D^{O_k^{U_{2n}^t}}(1^n) \equiv D^{H_k}(1^n)$			

For any $\ell, m \in \mathbb{N}$ and any algorithm *A*, it holds that $A^{\prod_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length *m*.

Function Families	PRF from OWF	PRP from PRF	Applications O
Actual proof			
$D^{O_k^{U_{2n}^t}}(1^n) \equiv D^{H_k}(1^n)$)		

For any $\ell, m \in \mathbb{N}$ and any algorithm *A*, it holds that $A^{\prod_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length *m*.

Proof?

Function Families	PRF from OWF ○○○○○○●○	PRP from PRF	Applications o
Actual proof			
$D^{O_k^{U_{2n}^t}}(1^n) \equiv D^{H_k}(1^n)$			

For any $\ell, m \in \mathbb{N}$ and any algorithm *A*, it holds that $A^{\prod_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length *m*.

Proof? Does the above trivialize the whole issue of PRF?

Function Families	PRF from OWF ○○○○○○●○	PRP from PRF	Applications o
Actual proof			
$D^{O_k^{U_{2n}^t}}(1^n) \equiv D^{H_k}(1^n)$			

For any $\ell, m \in \mathbb{N}$ and any algorithm *A*, it holds that $A^{\prod_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length *m*.

Proof? Does the above trivialize the whole issue of PRF? Let \widetilde{O}_k be the variant that returns z (and not $f_{x_{k+1,...,n}}(z)$) and let \widetilde{D}_k be the algorithm that implements D using \widetilde{O}_k (by computing $f_{x_{k+1,...,n}}(z)$ by itself).

Function Families	PRF from OWF ○○○○○○●○	PRP from PRF	Applications o
Actual proof			
$D^{O_k^{U_{2n}^t}}(1^n) = D^{H_k}(1^n)$			

For any $\ell, m \in \mathbb{N}$ and any algorithm *A*, it holds that $A^{\prod_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length *m*.

Proof? Does the above trivialize the whole issue of PRF? Let \widetilde{O}_k be the variant that returns z (and not $f_{x_{k+1,...,n}}(z)$) and let \widetilde{D}_k be the algorithm that implements D using \widetilde{O}_k (by computing $f_{x_{k+1,...,n}}(z)$ by itself). By Proposition 9

$$\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\widetilde{O}_k^{U_{2n}^t}}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\pi_{k,n}}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$
(2)

Function Families	PRF from OWF ○○○○○○●	PRP from PRF	Applications o
Actual proof			
$D^{O_k^{g(U_n)^t}}(1^n) \equiv D^{1}$	$H_{k-1}(1^n)$		

It holds that

$$\mathsf{D}^{O_k^{g(U_n)^t})}(1^n) \equiv \mathsf{D}^{O_{k-1}^{U_{2n}^t}}(1^n) \tag{3}$$

Function Families	PRF from OWF ○○○○○○●	PRP from PRF	Applications O
Actual proof			
$\overline{D^{O_k^{g(U_n)^t}}(1^n)}\equivD^{U_n}$	$H_{k-1}(1^n)$		

It holds that

$$\mathsf{D}^{O_k^{g(U_n)^t})}(1^n) \equiv \mathsf{D}^{O_{k-1}^{U_{2n}^t}}(1^n) \tag{3}$$

Hence, by Equation (2)

$$\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$$

Section 3

PRP from PRF

Function Families	PRF from OWF	PRP from PRF	Applications O
Pseudorandom	nermutations		

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 10 (pseudorandom permutations)

A permutation ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{P}}_n}(1^n) = 1] = \operatorname{neg}(n), \quad (4)$$

Function Families	PRF from OWF	PRP from PRF	Applications O
Pseudorandom pa	rmutations		

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 10 (pseudorandom permutations)

A permutation ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{n}}_n}(1^n) = 1] = \operatorname{neg}(n), \quad (4)$$

for any oracle-aided PPT D

• Equation (4) holds for any PRF

Function Families	PRF from OWF	PRP from PRF	Applications o
Construction			

Given a function family
$$\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell, r) = (r, f(r) \oplus \ell)$.

Function Families	PRF from OWF	PRP from PRF	Applications o
Construction			

Given a function family
$$\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell, r) = (r, f(r) \oplus \ell)$.
For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

Function Families	PRF from OWF	PRP from PRF	Applications O
Construction			

Given a function family
$$\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell, r) = (r, f(r) \oplus \ell)$.
For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

 $\mathsf{LR}(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

0000	0000000	o
Construction		

Given a function family
$$\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell, r) = (r, f(r) \oplus \ell)$.
For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

 $\mathsf{LR}(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

Theorem 12 (Luby-Rackoff)

Assuming that \mathbb{F} is a PRF, then $LR^3(\mathbb{F})$ is a PRP

Function Families	PRF from OWF	PRP from PRF	Applications O
Construction			

Given a function family
$$\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$$
, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}^{2n} \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell, r) = (r, f(r) \oplus \ell)$.
For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

 $\mathsf{LR}(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

Theorem 12 (Luby-Rackoff)

Assuming that \mathbb{F} is a PRF, then $LR^3(\mathbb{F})$ is a PRP

It suffices to prove the the following holds for any $n \in \mathbb{N}$ (why?)

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \le \frac{4 \cdot q^2}{2^n},$$
 for any q-query algorithm D.

0

Section 4

Applications

Function Families	PRF from OWF	PRP from PRF	Applications o
general paradigm			

Design a scheme assuming that you have random functions, and the realize them using PRF.

Function Families	PRF from OWF	PRP from PRF	Applications ●
Private-key Encryption			
Private-key Encry	/ption		

Construction 14 (PRF-based encryption)

Given an (efficient) PRF $\mathbb F,$ define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen (1^n) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\text{Dec}_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Function Families	PRF from OWF	PRP from PRF	Applications ●
Private-key Encryption			
Private-key Encry	ption		

Construction 14 (PRF-based encryption)

Given an (efficient) PRF $\mathbb F,$ define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen (1^n) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\text{Dec}_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Advantages over the PRG based scheme?

Function Families	PRF from OWF	PRP from PRF	Applications ●
Private-key Encryption			
Private-key Encry	ption		

Construction 14 (PRF-based encryption)

Given an (efficient) PRF \mathbb{F} , define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen (1^n) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\text{Dec}_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security