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Q F = {Fp}nen, where F, = {f: {0,1}™(") — {0,1}4M}
Q@ We write F = {F,,: {0,1}™(" s {0,1}4"M}

© If m(n) = ¢(n) = n, we omit it from the notation

© We identify function with their description

© The rv F, is uniformly distributed over F,
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Definition 1 (efficient function family)

An ensemble of function families F = {Fp} nen is efficient, if the

following hold:

Samplable. F is samplable in polynomial-time: there exists a
PPT that given 17, outputs (the description of) a
uniform element in 7.

Efficient. There exists a polynomial-time algorithm that

given x € {0,1}" and (a description of) f € Fp,
outputs f(x).
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For m,¢ € N, we let Ny, consist of all functions from {0, 1}" to
{0,1}".
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random functions

Definition 2 (random functions)

For m,¢ € N, we let Ny, consist of all functions from {0, 1}" to
{0,1}".

@ |t takes 2™ - ¢ bits to describe an element inside My ;.

@ We sometimes think of = € N, , as a random string of
length 2™ - ¢.

o nn — nn7n
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Definition 3 (pseudorandom functions)

A function family ensemble F = {F, : {0,1}™(" — {0,1}4"M} is
pseudorandom, if

[PFIDF~(17) = 1] = PrDMo40 (17) = 1| = neg(n),

for any oracle-aided PPT D.
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pseudorandom functions

Definition 3 (pseudorandom functions)

A function family ensemble F = {F, : {0,1}™(" — {0,1}4"M} is
pseudorandom, if

[PFIDF~(17) = 1] = PrDMo40 (17) = 1| = neg(n),

for any oracle-aided PPT D.

@ Suffices to consider ¢(n) = n

© Easy to construct (with no assumption) for m(n) = log n
and ¢ € poly

© PREF easily imply a PRG
© Pseudorandom permutations (PRPs)



PRF from OWF

Section 2

PRF from OWF



PRF from OWF
.

the construction

the construction

Construction 4
Let g: {0,1}" — {0,1}2". Let go(s) = 9(s)1,..n and
91(8) = 9(S)n+1,..2n- For sand x € {0,1}*, let /s be defined as

fs(X) = gxa(- - - (9x(9x(5))))
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Construction 4
Let g: {0,1}" — {0,1}2". Let go(s) = 9(s)1,..n and
91(8) = 9(S)n+1,..2n- For sand x € {0,1}*, let /s be defined as

fs(X) = Gxa(- - - (9x(9x (8))))
LetF, = {fs: s € {0,1}"} and F = {F,}.
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the construction

Construction 4

fs(X) = Gxa(- - - (9x(9x (8))))
LetF, = {fs: s € {0,1}"} and F = {F,}.

g is efficient function implies that F is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

Ifgis a PRG thenF is a PRF.

Corollary 6
OWFs imply PRFs.
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@ Easy to prove for input of length 2.

Observation: D = (g(go(Un)), 9(g1(Un))) is
pseudorandom:

Proof: D' = (g(Uy”), 9(U})) ¢ Uy and D ~ D
@ Hence we can handle input of length 2
@ Extend to longer inputs?

@ We show that an efficient sample from the fruth table of
f < Fp, is computationally indistinguishable from that of
m 4= Mpp.
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Actual proof

Assume 3 PPT D, p € poly and infinite set Z C N with

PriDF(1") = 1] — Pr[D""(1") = 1]| > 1

CONE

forany ne Z andfix n € N
Let t = {(n) € poly be a bound on the running time of D(1").
We use D to construct a PPT D’ such that

1
|Pr[D’(US,) = 1] — Pr[D'(g(Un)") = 1| > (R
where U} = Uél), s UZ(.;(”)) and
g(Un)t = g(U)),..., g(US ™.
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Let g and f be as in the definition of Fj,

Definition 7
Fork € {0,...,n}, let Hx = {hr: {0,1}" — {0,1}": m € Mg p},

where h(X) = fre  )(Xkt1,..0n)
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Actual proof

The hybrid

Let g and f be as in the definition of Fj,

Definition 7
Fork € {0,...,n}, let Hx = {hr: {0,1}" — {0,1}": m € Mg p},

where hz(x) = fr(x,

° () =y
@ MNy,={0,1}",andform € Moy plet r(\) ==

) (Xkt1,...0n)

.....

@ Note that Ho = Fpand Hp =My p
@ Can we emulate Hx? We emulate if from D’s point of view.
@ We present efficient “function family” Oy = {O,f“'"’st} s.t.
o DO (1) = DHk(11)
o DO (17) = DHe1(17)
for any k € [n], where Hk is uniformly sampled from #.
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Actual proof

completing the proof

Let D’(y) return DO/{(1”) for k uniformly chosen in [n]. Hence

|Pr[D(Uz, = 1] = PrD'(g(Un)") = 1]

n ut
>~ L ppol®(iny = 1) -

k=1 k=1

En: PrDP(17) = 1] = Y " Pr[D-1(17) = 1]
k=1

1
n
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completing the proof

Let D’(y) return DO/{(1”) for k uniformly chosen in [n]. Hence

|Pr[D(Uz, = 1] = PrD'(g(Un)") = 1]

= zn:l'Pf[Dokué"U”)— - %'Pr[Dog(Un) (1M =1]
k=1 k=1
= 15 Z PI’[DHk(1n) = 1] — Pr[DHk71(1ﬂ) —_ 1]
k=1 k=1
1 m _ (4N _ _ 1
= [PDM(17) = 1] - PrD*(17) = 1] = s
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The family O

O ={0] % s",... 8! € {0,1}7 x {0,1}"}.

Algorithm 8 (OF'*)
On the i’th query x’ € {0,1}"™:

Q Ifx“with x{ , , =x{ ,_,was previously asked,
setz = sﬁk (where ¢ is the minimal such index).
Otherwise, set z = s;, .

Q Return f7(Xk41,..n)
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O ={0] % s",... 8! € {0,1}7 x {0,1}"}.

Algorithm 8 (OF'*)
On the i’th query x’ € {0,1}"™:

Q Ifx“with x{ , , =x{ ,_,was previously asked,
setz = sﬁk (where ¢ is the minimal such index).
Otherwise, set z = s;, .

© Return f2(Xk41,...,n)

Oy is stateful.
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Actual proof

The family Oy

O ={0] % s",... 8! € {0,1}7 x {0,1}"}.

Algorithm 8 (Of""‘st)
On the /'th query x' € {0, 1}":
@ 1 win Xf""’k_1 y X{v-~,k—1 was previously asked,

setz = sﬁk (where ¢ is the minimal such index).
Otherwise, set z = s}, .

© Return fz(Xk+1,...,n)

Oy is stateful.

Ui
We need to prove that D%’ (1) = DH«(17) and
DO (1n) = DHe1 (1),
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DO (17) = DHk(17)

Proposition 9

For any £, m € N and any algorithm A, it holds that

Alem = ABem where the stateful random algorithm By
answers identical queries with the same answer, and answers
new queries with a random string of length m.
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Proposition 9

For any £, m € N and any algorithm A, it holds that

Alem = ABem where the stateful random algorithm By
answers identical queries with the same answer, and answers
new queries with a random string of length m.

Proof?
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Proposition 9

For any ¢, m € N and any algorithm A, it holds that

Alem = ABem where the stateful random algorithm By
answers identical queries with the same answer, and answers
new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?
Let O be the variant that returns z (and not fx ,(2)) and let

Kk+1,...,
Dy be the algorithm that implements D using Ok (by computing

fuerr.n(2) by itself).
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Actual proof

ut
DO (17) = DHk(17)

Proposition 9

For any ¢, m € N and any algorithm A, it holds that

Alem = ABem where the stateful random algorithm By
answers identical queries with the same answer, and answers
new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?
Let O be the variant that returns z (and not P, ,(2)) and let

Dy be the algorithm that implements D using Ok (by computing
fxiq . »(2) by itself).

,,,,,

By Proposition 9

U2n ~

DO (1M =D,* (17) = Dg*"(1™) = DMk (1) 2
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DA (17) = DHe-1(17)

It holds that

Do) (1m) = D4 (17) )
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Actual proof

t
DA (17) = DHe-1(17)

It holds that

)17y = DO (1) 3)

Hence, by Equation (2)

t
DO (17) = DHe-1(17)
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Pseudorandom permutations

Let I, be the set of all permutations over {0, 1}".

Definition 10 (pseudorandom permutations)

A permutation ensemble F = {F, : {0,1}" +— {0,1}"} isa
pseudorandom permutation, if

[PrID™(17) = 1] - PAD™(1") = 1| =neg(n),  (4)

for any oracle-aided PPT D




PRP from PRF

Pseudorandom permutations

Let I, be the set of all permutations over {0, 1}".

Definition 10 (pseudorandom permutations)

A permutation ensemble F = {F, : {0,1}" +— {0,1}"} isa
pseudorandom permutation, if

[PrID™(17) = 1] - PAD™(1") = 1| =neg(n),  (4)

for any oracle-aided PPT D

@ Equation (4) holds for any PRF
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Given a function family F = {F,: {0,1}" — {0,1}"}, let
LR(F) = {LR(F,): {0,1}2n+— {0,1}2"}, where
LR(F,) = {LR(f): f € F,} and LR(f)(¢,r) = (r,f(r) & ¢).
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PRP from PRF

Construction

Given a function family F = {F,: {0,1}" — {0, 1}"}, let
LR(F) = {LR(F,): {0,1}2n+ {0,1}2"}, where

LR(Fn) = {LR(f): f € Fy} and LR(f)(¢,r) = (r,f(r) & ¢).
For i € N, let LR/(FF) be the i'th iteration of LR(F).

LR(F) is always a permutation family, and is efficient if IF is.

Theorem 12 (Luby-Rackoff)
Assuming that F is a PRF, then LR3(F) is a PRP

It suffices to prove the the following holds for any n € N (why?)

IPrDLR* (M) (17) = 1] — Pr[DMn (1)
for any g-query algorithm D.
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general paradigm

Design a scheme assuming that you have random functions,
and the realize them using PRF.
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Construction 14 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme
(Gen, Enc, Dec)) se:

Key generation Gen(1") returns k « F,
Encryption Enck(m) returns Un, k(Up) @ m
Decryption Deck(c = (cq,cp)) returns k(cq) & ¢
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Applications
°

Private-key Encryption

Private-key Encryption

Construction 14 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme
(Gen, Enc, Dec)) se:

Key generation Gen(1") returns k « F,
Encryption Enck(m) returns Un, k(Up) @ m
Decryption Deck(c = (cq,cp)) returns k(cq) & ¢

@ Advantages over the PRG based scheme?
@ Proof of security
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