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Let P and Q be two distributions over a finite set /. Their
statistical distance (also known as, variation distance), denoted
by SD(P, Q), is defined as

X%;{IP x)| = max (P(S) - Q(S))

We will only consider finite distributions.
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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set /. Their
statistical distance (also known as, variation distance), denoted
by SD(P, Q), is defined as

X%;{IP x)| = max (P(S) - Q(S))

We will only consider finite distributions.

For any pair of (finite) distribution P and Q, it holds that such

SD(P, Q) = max (Pryp[D(x) = 1] = Prx[D(x) = 1]),

where D is any algorithm.




Distributions and Statistical Distance

Some useful facts

Let P, Q, R be finite distributions, then
Triangle inequality:

SD(P,R) < SD(P,Q) +SD(Q,R)
Repeated sampling:

Random variables
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)
P = {Pn}nen is a distribution ensemble, if P, is a (finite)

distribution for any n € N.
P is efficiently samplable (or just efficient), if 3 PPT Samp with

Sam(1™) = P,.
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

P = {Pn}nen is a distribution ensemble, if P, is a (finite)
distribution for any n € N.

P is efficiently samplable (or just efficient), if 3 PPT Samp with
Sam(1™) = P,.

Definition 3 (statistical indistinguishability)

Two distribution ensembles P and Q are statistically
indistinguishable, it SD(Pp, Qn) = neg(n).

Alternatively, if ‘A(DRQ)(n) = neg(n), for any algorithm D,

where

Alp.0)(N) := Pryp,[D(17, x) = 1] = Pryq,[D(1", x) = 1] (1)
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Computational Indistinguishability

Repeated sampling

Assume that P and Q are computationally indistinguishable, is
it always true that P? = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 5(n ‘A P2, QZ)( )’
o(n) = [Py pe[D(x) =1] = Pr,_g[D(x) =1]|
< |PrecplD(x) = 1] = Pryc(p,0)[D(x) = 1]

+|Prrc(poa@n[D(x) = 1] = Pr,._gzlD(x) = 1]
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Repeated sampling

Assume that P and Q are computationally indistinguishable, is
it always true that P? = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 5(n ‘A P2, QZ)( )’
o(n) = [Py pe[D(x) =1] = Pr,_g[D(x) =1]|
< |PrecplD(x) = 1] = Pryc(p,0)[D(x) = 1]

+|Prrc(poa@n[D(x) = 1] = Pr,._gzlD(x) = 1]

B2 5.0y (M| + [ 805,01, 00)(7)



Computational Indistinguishability

Repeated sampling

Assume that P and Q are computationally indistinguishable, is
it always true that P? = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 5(n ‘A P2, QZ)( )’
o(n) = [Py pe[D(x) =1] = Pr,_g[D(x) =1]|
< |PrecplD(x) = 1] = Pryc(p,0)[D(x) = 1]

‘Pr)«—(Pn,on)[D(X) =1] = Pry D) = 1]‘
B2 5.0y (M| + [ 805,01, 00)(7)

So either |AP | > 6(n)/2, or |AD

D o001l = 6(n)/2

G
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@ Assume D is a PPT and that ‘A(DPZ Qz)(n)‘ > 1/p(n) for

some p € poly and infinitely many n’s, and assume wilg.

that ‘Agz,(p,g)(”)‘ > 1/2p(n) for infinitely many n’s.
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Computational Indistinguishability

@ Assume D is a PPT and that ‘A(DPQQZ)(n)‘ > 1/p(n) for
some p € poly and infinitely many n’s, and assume wilg.
that ‘Agz,(p,g)(”)‘ > 1/2p(n) for infinitely many n's.

@ Can we use D to contradict the fact that 7 and Q are
computationally close?

@ Assuming that P and Q are efficiently samplable

@ Non-uniform settings
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Repeated sampling cont.

Given t = t(n) € N and a distribution ensemble P = {P,}pen,
let P = (PR} nen

Question 6

Let t = t(n) < poly(n) be an eff. computable integer function.
Assume that P and Q are eff. samplable and computationally
indistinguishable, does it mean that P! and Q! are?
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Computational Indistinguishability

Repeated sampling cont.

Given t = t(n) € N and a distribution ensemble P = {P,}pen,
let P = (PR} nen

Question 6

Let t = t(n) < poly(n) be an eff. computable integer function.
Assume that P and Q are eff. samplable and computationally
indistinguishable, does it mean that P! and Q! are?

Proof:
@ Induction?
@ Hybrid
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Hybrid argument

Let D be an algorithm and let 5(n) = ‘A(Dpt Qt)(n)‘.

@ FixneN,andforie€ {0,...,t=t(n)}, let
H' = (p1,...,PiQi+1, - - -, qt), where the p’s [resp., g’s] are
uniformly (and independently) chosen from P, [resp., from
Qnl.
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Hybrid argument

Let D be an algorithm and let 5(n) = ‘A?Pt’ Qt)(n)‘.
@ Fixne N,andfori e {0,...,t=1t(n)}, let

H' = (p1,...,Pi, Qi+1, - - -, Gr), Where the p's [resp., g’s] are
uniformly (and independently) chosen from P, [resp., from

Qnl.
o Since 6(n) = A%, 1o(0)] = [Sicyg A s (8
i € [t] with ‘AD,7H,_1(t)‘ > 8(n)/t(n).

@ How do we use it?

, there exists
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Using hybrid argument via estimation

Algorithm 7 (D)

Input: 17 and x € {0,1}*

@ Find i € [f] with

A, -+ (1)] = 8(n)/21(n)

Q Let(p1,....pi,Gis1,---.Gt) «— H'
© Return D(1%, p1, ..., Pi-1, X, Gis1,- -+ Gt), -
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Computational Indistinguishability

Using hybrid argument via estimation

Algorithm 7 (D)

Input: 17 and x € {0,1}*

@ Find i € [f] with

A, -+ (1)] = 8(n)/21(n)

Q Let(p1,....pi,Gis1,---.Gt) «— H'
© Return D(1%, p1, ..., Pi-1, X, Gis1,- -+ Gt), -

© how do we find i?
© Easy in the non-uniform case
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Using Hybrid argument via sampling

Algorithm 8 (D)
Input: 17 and x € {0,1}*
© Sample i « [t = t(n)]
Q Let(p1,....pi,Gis1,---.Gt) « H'
© Return D(14,p1,. .., Pi—1, X, Qix1s- - -, Gt)-
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Computational Indistinguishability

Using Hybrid argument via sampling

Algorithm 8 (D)

Input: 17 and x € {0,1}*

© Sample i « [t = t(n)]

Q Let(p1,....pi,Gis1,---.Gt) « H'

© Return D(14,p1,. .., Pi—1, X, Qix1s- - -, Gt)-

’AD7; Q) ”)’ = |Prpep,[D'(p) = 1] = Prgcq,[D'(q) = 1]|

1?2 PI’XFH,.[D(X) = 1] - 1? Z Prer,-_1 [D(X) = 1]

ie[t] ielt]

= ‘1 (PrXH(Ht[D(X) = 1] - Prero[D(X) = 1])‘
— §(n)/t(n)
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Pseudorandom Generators

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}4"M},cy is
pseudorandom, if it is computationally indistinguishable from

{Uz(n)}neN-

@ Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}" — {0,1}" is a
pseudorandom generator, if

@ g is length extending (i.e., ¢(n) > nfor any n)

@ g(U,) is pseudorandom

@ Do such generators exist?
@ Imply one-way functions (homework)
@ Do they have any use?
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@ Building blocks in constructions of PRGS from OWF
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Hardcore Predicates

Hardcore predicates

@ Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b: {0,1}" — {0,1} is a
hardcore predicate of f: {0,1}" — {0,1}", if

PrP(I(Un)) = b(Un)] < & +neg(n).

for any PPT P.

@ Does the existence of a hardcore predicate for f, implies
that f is one way? If f is injective?

@ Fact: any PRG has HCP (homework).
@ Fact: any OWF has a hardcore predicate (next class)
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OWP to PRG

Let f: {0,1}" — {0,1}" be a permutation and let
b:{0,1}" — {0, 1} be a hardcore predicate for f, then
a(x) = (f(x), b(x)) is a PRG.
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b:{0,1}" — {0, 1} be a hardcore predicate for f, then
a(x) = (f(x), b(x)) is a PRG.

Proof: Assume 3 a PPT D, and infinite set Z C N and p € poly
with

B30, | > £(0) = 1/p(0)

for any n € Z. We use D for breaking the hardness of b.



PRGs from OWPs

OWP to PRG

Let f: {0,1}" — {0,1}" be a permutation and let
b:{0,1}" — {0, 1} be a hardcore predicate for f, then
a(x) = (f(x), b(x)) is a PRG.

Proof: Assume 3 a PPT D, and infinite set Z C N and p € poly
with

B30, | > £(0) = 1/p(0)
for any n € Z. We use D for breaking the hardness of b.

@ We assume wilg. that
Pr[D(g(Un)) = 1] = Pr[D(Up41) =1] > e(n)forany ne 7
(can we do it?), and fix n € Z.
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OWP to PRG cont.

@ Let §(n) = Pr[D(Up41) = 1] (note that
Pr[D(g(Un)) = 1] =4 +2).



PRGs from OWPs
OWP to PRG cont.

@ Let §(n) = Pr[D(Up41) = 1] (note that
PriD(g(Un)) = 1] =4 +e).
@ Compute

0 = Pr[D(f(Un), Uy) =1]

Pr{U; = b(Un)] - PrD(f(Un), Uy) =
+ Pr{Us = b(Up)] - Pr[D(f(Un), Uy) =




PRGs from OWPs
OWP to PRG cont.

@ Let §(n) = Pr[D(Up41) = 1] (note that
Pr[D(g(Un)) = 1] =4 +2).

@ Compute
d = Pr[D(f(Upn), Uy) =1]
= Pr[U; = b(Upn)] - Pr[D(f(Up), Uy) =1 | Uy = b(Up)]
+ Pr[U; = b(Uyn)] - Pr[D(f(Un), Uy) = 1| Uy = b(Un)]

2(5+2)+ 1 - PIID((Un), Us) = 1| Uy = B(Ty)]




PRGs from OWPs
OWP to PRG cont.

@ Let §(n) = Pr[D(Up41) = 1] (note that
Pr[D(g(Un)) = 1] =4 +2).

@ Compute
d = Pr[D(f(Upn), Uy) =1]
= Pr[U; = b(Upn)] - Pr[D(f(Up), Uy) =1 | Uy = b(Up)]
+ Pr[U; = b(Uyn)] - Pr[D(f(Un), Uy) = 1| Uy = b(Un)]

2(5+2)+ 1 - PIID((Un), Us) = 1| Uy = B(Ty)]

Hence,

Pr(D(f(Un), b(Un)) =1] =0 —¢ @)



PRGs from OWPs

OWP to PRG cont.




PRGs from OWPs

OWP to PRG cont.

@ Pr[D(f(Un),b(Un)) =1]=0d+¢
@ Pr[D(f(Un),b(Un)) =1] =09 —¢
@ Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: y € {0,1}"
@ Flip a random coin ¢ « {0,1}.

© 1t D(y, c) = 1 output ¢, otherwise, output C.




PRGs from OWPs

OWP to PRG cont.

@ PriD(f(Un), b(Upn)) =1]=0+¢
@ Pr[D(f(Un),b(Un)) =1] =09 —¢
@ Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: y € {0,1}"
@ Flip a random coin ¢ « {0,1}.

© 1t D(y, c) = 1 output ¢, otherwise, output C.

@ It follows that
Pr{P(f(Un)) = b(Un)]
= Pr[c = b(Uy)] - PrD(f(Un),c) = 1| ¢ = b(Un)]
+Pr[c = b(Un)] - Pr[D(f(Un),c) =0 | ¢ = b(Un)]




PRGs from OWPs

OWP to PRG cont.

@ PriD(f(Un), b(Upn)) =1]=0+¢
@ Pr[D(f(Un),b(Un)) =1] =09 —¢
@ Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: y € {0,1}"
@ Flip a random coin ¢ « {0,1}.

© 1t D(y, c) = 1 output ¢, otherwise, output C.

@ It follows that
Pr[P(f(Un)) = b(Un)]
= Prc = b(Un)] - Pr[D(f(Un),c) =1 | ¢ = b(Un)]
+Pr[c = b(Un)] - Pr[D(f(Up),¢) = 0 | ¢ = b(Un)]

1 1
= 50+ +5(1-d+9) =

r\n\—u



PRGs from OWPs

OWP to PRG cont.

Remark 14
@ Prediction to distinguishing (homework)




PRGs from OWPs

OWP to PRG cont.

Remark 14

@ Prediction to distinguishing (homework)

@ PRG from any OWF: (1) Regular OWFs, first use pairwise
hashing to convert into “almost" permutation. (2) Any OWF,
harder
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Given g: {0,1}" — {0,1}"1 and / € N, define
g :{0,1}"— {0,1}"* as

where g°(x) = x.
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PRG Length Extension

PRG Length Extension

Construction 15 (iterated function)

Given g: {0,1}" — {0,1}"1 and / € N, define
g :{0,1}"— {0,1}"* as

where g°(x) = x.

Let g: {0,1}" — {0,1}"*" be a PRG, then
g™ {0,1}" — {0,1}™") is a PRG, for any t € poly.

Proof: Assume 3 a PPT D, an infinite set Z C N and p € poly
with
D
DG (Un).Upso | > €M) = 1/p(n),

for any n € Z. We use D for breaking the hardness of g.
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PRG Length Extension cont.

@ FixneN,forie{0,...,t=t(n)}, let H = U;_;, g'(Up)

(i.e., the distribution of H' is (x,g"(x’))ﬂ_{oj},,,7)(,%{071},,)
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PRG Length Extension cont.

@ FixneN,forie{0,....t=t(n)}, let H' = Uy_;, g'(Un)
(i.e., the distribution of H' is (x, g'(x"))

@ Note that H® = U, and H! = g!(U,).

x+{0,1}1—/ x’«+{0,1 }”)



PRG Length Extension

PRG Length Extension cont.

@ FixneN,forie{0,....t=t(n)}, let H' = Uy_;, g'(Un)
(i.e., the distribution of H' is (x, g'(x"))

@ Note that H® = U, and H! = g!(U,).

x+{0,1}1—/ x’«+{0,1 }”)

Algorithm 17 (D)

Input: 17 and y € {0, 1}
@ Sample i « [f]
@ Return D17, Ur—i, y1, 9" (2, nt1))-
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