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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set U . Their
statistical distance (also known as, variation distance), denoted
by SD(P,Q), is defined as

SD(P,Q) :=
1
2

∑
x∈U
|P(x)−Q(x)| = max

S⊆U
(P(S)−Q(S))

We will only consider finite distributions.

Claim 1
For any pair of (finite) distribution P and Q, it holds that such

SD(P,Q) = max
D

(Prx←P [D(x) = 1]− Prx←Q[D(x) = 1]) ,

where D is any algorithm.
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Some useful facts

Let P,Q,R be finite distributions, then
Triangle inequality:

SD(P,R) ≤ SD(P,Q) + SD(Q,R)

Repeated sampling:

SD((P,P), (Q,Q)) ≤ 2 · SD(P,Q)

Random variables
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)
P = {Pn}n∈N is a distribution ensemble, if Pn is a (finite)
distribution for any n ∈ N.
P is efficiently samplable (or just efficient), if ∃ PPT Samp with
Sam(1n) ≡ Pn.

Definition 3 (statistical indistinguishability)
Two distribution ensembles P and Q are statistically
indistinguishable, if SD(Pn,Qn) = neg(n).

Alternatively, if
∣∣∣∆D

(P,Q)(n)
∣∣∣ = neg(n), for any algorithm D,

where

∆D
(P,Q)(n) := Prx←Pn [D(1n, x) = 1]− Prx←Qn [D(1n, x) = 1] (1)
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Section 2

Computational Indistinguishability
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally
indistinguishable, if

∣∣∣∆D
(P,Q)(n)

∣∣∣ = neg(n), for any PPT D.

Can it be different from the statistical case?
Non uniform variant
Sometime behaves different then expected!
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Repeated sampling

Question 5
Assume that P and Q are computationally indistinguishable, is
it always true that P2 = (P,P) and Q2 = (Q,Q) are?

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P2,Q2)
(n)
∣∣∣

δ(n) = |Prx←P2
n
[D(x) = 1]− Prx←Q2

n
[D(x) = 1]|

≤
∣∣∣Prx←P2

n
[D(x) = 1]− Prx←(Pn,Qn)[D(x) = 1]

∣∣∣
+
∣∣∣Prx←(Pn,Qn)[D(x) = 1]− Prx←Q2

n
[D(x) = 1]

∣∣∣
=

∣∣∣∆D
(P2,(P,Q)(n)

∣∣∣+
∣∣∣∆D

((P,Q),Q2)(n)
∣∣∣

So either |∆D
(P2,(P,Q)(n)| ≥ δ(n)/2, or |∆D

((P,Q),Q2)
(n)| ≥ δ(n)/2
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Assume D is a PPT and that
∣∣∣∆D

(P2,Q2)
(n)
∣∣∣ ≥ 1/p(n) for

some p ∈ poly and infinitely many n’s, and assume wlg.
that

∣∣∣∆D
P2,(P,Q)(n)

∣∣∣ ≥ 1/2p(n) for infinitely many n’s.

Can we use D to contradict the fact that P and Q are
computationally close?
Assuming that P and Q are efficiently samplable
Non-uniform settings
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Repeated sampling cont.

Given t = t(n) ∈ N and a distribution ensemble P = {Pn}n∈N,
let P t = {P t(n)

n }n∈N

Question 6
Let t = t(n) ≤ poly(n) be an eff. computable integer function.
Assume that P and Q are eff. samplable and computationally
indistinguishable, does it mean that P t and Qt are?

Proof:
Induction?
Hybrid
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Hybrid argument

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P t ,Qt )
(n)
∣∣∣.

Fix n ∈ N, and for i ∈ {0, . . . , t = t(n)}, let
H i = (p1, . . . ,pi ,qi+1, . . . ,qt ), where the p’s [resp., q’s] are
uniformly (and independently) chosen from Pn [resp., from
Qn].

Since δ(n) =
∣∣∣∆D

H t ,H0(t)
∣∣∣ =

∣∣∣∑i∈[t] ∆D
H i ,H i−1(t)

∣∣∣, there exists

i ∈ [t ] with
∣∣∣∆D

H i ,H i−1(t)
∣∣∣ ≥ δ(n)/t(n).

How do we use it?
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Using hybrid argument via estimation

Algorithm 7 (D′)
Input: 1n and x ∈ {0,1}∗

1 Find i ∈ [t ] with
∣∣∣∆D

H i ,H i−1(t)
∣∣∣ ≥ δ(n)/2t(n)

2 Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3 Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ), .

1 how do we find i?
2 Easy in the non-uniform case
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Using Hybrid argument via sampling

Algorithm 8 (D′)
Input: 1n and x ∈ {0,1}∗

1 Sample i ← [t = t(n)]

2 Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3 Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ).

∣∣∣∆D′
(P,Q)(n)

∣∣∣ =
∣∣Prp←Pn [D′(p) = 1]− Prq←Qn [D′(q) = 1]

∣∣
=

∣∣∣∣∣∣1t
∑
i∈[t]

Prx←Hi [D(x) = 1]− 1
t

∑
i∈[t]

Prx←Hi−1 [D(x) = 1]

∣∣∣∣∣∣
=

∣∣∣∣1t (Prx←(Ht [D(x) = 1]− Prx←H0 [D(x) = 1]
)∣∣∣∣

= δ(n)/t(n)
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Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}`(n)}n∈N is
pseudorandom, if it is computationally indistinguishable from
{U`(n)}n∈N.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}n 7→ {0,1}`(n) is a
pseudorandom generator, if

g is length extending (i.e., `(n) > n for any n)

g(Un) is pseudorandom

Do such generators exist?
Imply one-way functions (homework)
Do they have any use?
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Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?
Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?
Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way?

If f is injective?
Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?

Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?
Fact: any PRG has HCP (homework).

Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Hardcore predicates

Building blocks in constructions of PRGS from OWF

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a
hardcore predicate of f : {0,1}n 7→ {0,1}n, if

Pr[P(f (Un)) = b(Un)] ≤ 1
2

+ neg(n),

for any PPT P.

Does the existence of a hardcore predicate for f , implies
that f is one way? If f is injective?
Fact: any PRG has HCP (homework).
Fact: any OWF has a hardcore predicate (next class)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

Section 5

PRGs from OWPs
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OWP to PRG

Claim 12
Let f : {0,1}n 7→ {0,1}n be a permutation and let
b : {0,1}n 7→ {0,1} be a hardcore predicate for f , then
g(x) = (f (x),b(x)) is a PRG.

Proof: Assume ∃ a PPT D, and infinite set I ⊆ N and p ∈ poly
with ∣∣∣∆D

g(Un),Un+1

∣∣∣ > ε(n) = 1/p(n)

for any n ∈ I. We use D for breaking the hardness of b.

We assume wlg. that
Pr[D(g(Un)) = 1]− Pr[D(Un+1) = 1] ≥ ε(n) for any n ∈ I
(can we do it?), and fix n ∈ I.
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OWP to PRG cont.

Let δ(n) = Pr[D(Un+1) = 1] (note that
Pr[D(g(Un)) = 1] = δ + ε).

Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

OWP to PRG cont.

Let δ(n) = Pr[D(Un+1) = 1] (note that
Pr[D(g(Un)) = 1] = δ + ε).
Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

OWP to PRG cont.

Let δ(n) = Pr[D(Un+1) = 1] (note that
Pr[D(g(Un)) = 1] = δ + ε).
Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

OWP to PRG cont.

Let δ(n) = Pr[D(Un+1) = 1] (note that
Pr[D(g(Un)) = 1] = δ + ε).
Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)



Pseudorandom Generators Hardcore Predicates PRGs from OWPs PRG Length Extension

OWP to PRG cont.

Pr[D(f (Un),b(Un)) = 1] = δ + ε
Pr[D(f (Un),b(Un)) = 1] = δ − ε

Consider the following algorithm for predicting b:

Algorithm 13 (P)
Input: y ∈ {0,1}n

1 Flip a random coin c ← {0,1}.
2 If D(y , c) = 1 output c, otherwise, output c.

It follows that

Pr[P(f (Un)) = b(Un)]

= Pr[c = b(Un)] · Pr[D(f (Un), c) = 1 | c = b(Un)]

+Pr[c = b(Un)] · Pr[D(f (Un), c) = 0 | c = b(Un)]

=
1
2
· (δ + ε) +

1
2

(1− δ + ε) =
1
2

+ ε.
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OWP to PRG cont.

Remark 14
Prediction to distinguishing (homework)

PRG from any OWF: (1) Regular OWFs, first use pairwise
hashing to convert into “almost" permutation. (2) Any OWF,
harder
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PRG Length Extension
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PRG Length Extension

Construction 15 (iterated function)

Given g : {0,1}n 7→ {0,1}n+1 and i ∈ N, define
g i : {0,1}n 7→ {0,1}n+i as

g i(x) = g(x)1,g i−1(g(x)2,...,n+1),

where g0(x) = x .

Claim 16

Let g : {0,1}n 7→ {0,1}n+1 be a PRG, then
gt(n) : {0,1}n 7→ {0,1}n+t(n) is a PRG, for any t ∈ poly.

Proof: Assume ∃ a PPT D, an infinite set I ⊆ N and p ∈ poly
with ∣∣∣∆D

gt (Un),Un+t(n)

∣∣∣ > ε(n) = 1/p(n),

for any n ∈ I. We use D for breaking the hardness of g.
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PRG Length Extension cont.

Fix n ∈ N, for i ∈ {0, . . . , t = t(n)}, let H i = Ut−i ,g i(Un)
(i.e., the distribution of H i is

(
x ,g i(x ′)

)
x←{0,1}t−i ,x ′←{0,1}n )

Note that H0 ≡ Un+t and H t ≡ gt (Un).

Algorithm 17 (D′)

Input: 1n and y ∈ {0,1}n+1

1 Sample i ← [t ]
2 Return D(1n,Ut−i , y1,g i−1(y2,...,n+1)).

Claim 18

It holds that
∣∣∣∆D′

g(Un),Un+1

∣∣∣ > ε(n)/t(n)

Proof: ...
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