Foundation of Cryptography (0368-4162-01), Lecture 9 Secure Multiparty Computation

Iftach Haitner, Tel Aviv University

January 24 – 31, 2012

Section 1

The Model

Multiparty Computation – computing a functionality f

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it? Real Vs. Ideal model

Let $\overline{A} = (A_1, A_2)$ be a pair of algorithms, and $x_1, x_2 \in \{0, 1\}^*$. Define $\text{REAL}_{\overline{A}}(x_1, x_2)$ as the joint outputs of $(A_1(x_1), A_2(x_2))$

Let $\overline{A} = (A_1, A_2)$ be a pair of algorithms, and $x_1, x_2 \in \{0, 1\}^*$. Define $\text{REAL}_{\overline{A}}(x_1, x_2)$ as the joint outputs of $(A_1(x_1), A_2(x_2))$

 An *honest* party follows the prescribed protocol (i.e., π) and outputs the prescribed output

Let $\overline{A} = (A_1, A_2)$ be a pair of algorithms, and $x_1, x_2 \in \{0, 1\}^*$. Define $\text{REAL}_{\overline{A}}(x_1, x_2)$ as the joint outputs of $(A_1(x_1), A_2(x_2))$

- An *honest* party follows the prescribed protocol (i.e., π) and outputs the prescribed output
- A *semi-honest* party follows the protocol, but might output additional information

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted IDEAL_{*f*, \overline{B} (x_1, x_2), is the joint output of the parties in the end of the following experiment:}

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted IDEAL_{*f*, \overline{B}}(x_1, x_2), is the joint output of the parties in the end of the following experiment:

1 The input of
$$B_i$$
 is x_i ($i \in \{0, 1\}$)

- 2 Each party sends value y_i to the *trusted party* (possibly \perp)
- **③** Trusted party sends $f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted IDEAL_{*f*, \overline{B} (x_1, x_2), is the joint output of the parties in the end of the following experiment:}

- The input of B_i is x_i ($i \in \{0, 1\}$)
- 2 Each party sends value y_i to the *trusted party* (possibly \perp)
- **③** Trusted party sends $f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value
 - An honest party, sends its input to the trusted party and outputs the trusted party message

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted IDEAL_{*f*, \overline{B}}(x_1, x_2), is the joint output of the parties in the end of the following experiment:

- The input of B_i is x_i ($i \in \{0, 1\}$)
- 2 Each party sends value y_i to the *trusted party* (possibly \perp)
- **③** Trusted party sends $f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value
 - An honest party, sends its input to the trusted party and outputs the trusted party message
 - A semi-honest party, might output additional information

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted IDEAL_{*f*, \overline{B}}(x_1, x_2), is the joint output of the parties in the end of the following experiment:

- The input of B_i is x_i ($i \in \{0, 1\}$)
- 2 Each party sends value y_i to the *trusted party* (possibly \perp)
- **③** Trusted party sends $f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value
 - An honest party, sends its input to the trusted party and outputs the trusted party message
 - A semi-honest party, might output additional information

 $\overline{A} = (A_1, A_2)$ is an *admissible* algorithm pair for π [resp., for *f*], at least one party is honest

 $\overline{A} = (A_1, A_2)$ is an *admissible* algorithm pair for π [resp., for *f*], at least one party is honest

Definition 1 (secure computation)

A protocol π securely computes f, if \forall real model, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model admissible pair PPT $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(x_1,x_2)\}_{x_1,x_2}\approx_c \{\mathsf{IDEAL}_{f,\overline{\mathsf{B}}}(x_1,x_2)\}_{x_1,x_2},$

where the enumeration is over all $x_1, x_2 \in \{0, 1\}^*$ with $|x_1| = |x_2|$.

 $\overline{A} = (A_1, A_2)$ is an *admissible* algorithm pair for π [resp., for *f*], at least one party is honest

Definition 1 (secure computation)

A protocol π securely computes f, if \forall real model, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model admissible pair PPT $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(x_1, x_2)\}_{x_1, x_2} \approx_c \{\mathsf{IDEAL}_{f, \overline{\mathsf{B}}}(x_1, x_2)\}_{x_1, x_2},$

where the enumeration is over all $x_1, x_2 \in \{0, 1\}^*$ with $|x_1| = |x_2|$.

Auxiliary inputs

 $\overline{A} = (A_1, A_2)$ is an *admissible* algorithm pair for π [resp., for *f*], at least one party is honest

Definition 1 (secure computation)

A protocol π securely computes f, if \forall real model, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model admissible pair PPT $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(x_1,x_2)\}_{x_1,x_2}\approx_c \{\mathsf{IDEAL}_{f,\overline{\mathsf{B}}}(x_1,x_2)\}_{x_1,x_2},$

where the enumeration is over all $x_1, x_2 \in \{0, 1\}^*$ with $|x_1| = |x_2|$.

- Auxiliary inputs
- Security parameter

 $\overline{A} = (A_1, A_2)$ is an *admissible* algorithm pair for π [resp., for *f*], at least one party is honest

Definition 1 (secure computation)

A protocol π securely computes f, if \forall real model, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model admissible pair PPT $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(x_1,x_2)\}_{x_1,x_2}\approx_c \{\mathsf{IDEAL}_{f,\overline{\mathsf{B}}}(x_1,x_2)\}_{x_1,x_2},$

where the enumeration is over all $x_1, x_2 \in \{0, 1\}^*$ with $|x_1| = |x_2|$.

- Auxiliary inputs
- Security parameter
- We focus on semi-honest adversaries

Section 2

Oblivious Transfer

Oblivious Transfer

A protocol that securely realizing the functionality OT: $(\{0,1\}^* \times \{0,1\}^*) \times \{0,1\} \mapsto \{0,1\}^* \times \bot$, where $f_1(\cdot) = \bot$ and $f_2((\sigma_0,\sigma_1),i) = \sigma_i$ and .

Oblivious Transfer

A protocol that securely realizing the functionality OT: $(\{0,1\}^* \times \{0,1\}^*) \times \{0,1\} \mapsto \{0,1\}^* \times \bot$, where $f_1(\cdot) = \bot$ and $f_2((\sigma_0,\sigma_1),i) = \sigma_i$ and .

• "Complete" for multiparty computation

Oblivious Transfer

A protocol that securely realizing the functionality OT: $(\{0,1\}^* \times \{0,1\}^*) \times \{0,1\} \mapsto \{0,1\}^* \times \bot$, where $f_1(\cdot) = \bot$ and $f_2((\sigma_0,\sigma_1),i) = \sigma_i$ and .

- "Complete" for multiparty computation
- We show how to construct for bit inputs

Oblivious Transfer from Trapdoor Permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Oblivious Transfer from Trapdoor Permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S,R))

Common input: 1^n , S's input: $\sigma_0, \sigma_1 \in \{0, 1\}$, R's input: $i \in \{0, 1\}$

- S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R
- R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S
- ③ S sets $c_j = b(Inv_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R
- R outputs $c_i \oplus b(x_i)$.

Oblivious Transfer from Trapdoor Permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S, R))

Common input: 1^n , S's input: $\sigma_0, \sigma_1 \in \{0, 1\}$, R's input: $i \in \{0, 1\}$

- S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R
- R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S
- S sets $c_j = b(Inv_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R
- R outputs $c_i \oplus b(x_i)$.

Claim 3

Protocol 2 securely realizes OT (in the semi-honest model).

The Model	Oblivious Transfer 00●00	Yao Garbled Circuit
Oblivious Transfer		
Proving Claim 3		

Correctness

~

Proving Claim 3

- Correctness
- Secrecy: We need to prove that ∀ real model, semi-honest, admissible PPT Ā = (A₁, A₂), exists an ideal-model, admissible pair PPT B = (B₁, B₂) s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n, (\sigma_0, \sigma_1), i\} \approx_c \{\mathsf{IDEAL}_{\mathsf{OT}, \overline{\mathsf{B}}}(1^n, (\sigma_0, \sigma_1), i\}, (1)$

where the enumeration is over $n \in \mathbb{N}$ and $\sigma_0, \sigma_1, i \in \{0, 1\}$

For $\overline{A} = (S', R)$, where S' is a semi-honest implementation of S, let $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$ be an ideal-model protocol, where $R_{\mathcal{I}}$ acts honestly, and

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$

- Send (σ_0, σ_1) to the trusted party
- 2 Emulate S'(1ⁿ, σ_0 , σ_1), acting as R(1ⁿ, 0)
- Output the same output that S' does

For $\overline{A} = (S', R)$, where S' is a semi-honest implementation of S, let $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$ be an ideal-model protocol, where $R_{\mathcal{I}}$ acts honestly, and

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$

- Send (σ_0, σ_1) to the trusted party
- 2 Emulate S'(1^{*n*}, σ_0 , σ_1), acting as R(1^{*n*}, 0)
- Output the same output that S' does

Claim 5

Equation (1) holds with respect to \overline{A} and \overline{B} .

For $\overline{A} = (S', R)$, where S' is a semi-honest implementation of S, let $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$ be an ideal-model protocol, where $R_{\mathcal{I}}$ acts honestly, and

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$

- Send (σ_0, σ_1) to the trusted party
- 2 Emulate S'(1^{*n*}, σ_0 , σ_1), acting as R(1^{*n*}, 0)
- Output the same output that S' does

Claim 5

Equation (1) holds with respect to \overline{A} and \overline{B} .

Proof?

Oblivious Transfer

S's privacy

For $\overline{A} = (S, R')$, where R' is a semi-honest implementation of R, let $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$ be an ideal-model protocol, where $S_{\mathcal{I}}$ acts honestly and

Algorithm 6 ($R'_{\mathcal{I}}$)

input: 1^{n} , $i \in \{0, 1\}$

- Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate R'(1^{*n*}, *i*), acting as S(1^{*n*}, σ_0 , σ_1), where $\sigma_i = \sigma$, and $\sigma_{1-i} = 0$
- Output the same output that R' does

Oblivious Transfer

S's privacy

For $\overline{A} = (S, R')$, where R' is a semi-honest implementation of R, let $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$ be an ideal-model protocol, where $S_{\mathcal{I}}$ acts honestly and

Algorithm 6 ($R'_{\mathcal{I}}$)

```
input: 1^{n}, i \in \{0, 1\}
```

- Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate R'(1^{*n*}, *i*), acting as S(1^{*n*}, σ_0 , σ_1), where $\sigma_i = \sigma$, and $\sigma_{1-i} = 0$
- Output the same output that R' does

Claim 7

Equation (1) holds with respect to \overline{A} and \overline{B} .

Oblivious Transfer

S's privacy

For $\overline{A} = (S, R')$, where R' is a semi-honest implementation of R, let $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$ be an ideal-model protocol, where $S_{\mathcal{I}}$ acts honestly and

Algorithm 6 ($R'_{\mathcal{I}}$)

```
input: 1^{n}, i \in \{0, 1\}
```

- Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate R'(1^{*n*}, *i*), acting as S(1^{*n*}, σ_0 , σ_1), where $\sigma_i = \sigma$, and $\sigma_{1-i} = 0$
- Output the same output that R' does

Claim 7

Equation (1) holds with respect to \overline{A} and \overline{B} .

Proof?

Section 3

Yao Garbled Circuit

Before we start

• Fix a (multiple message) semantically-secure private-key encryption scheme (*G*', E, D) with

1
$$G'(1^n) = U_n$$

2 $D_d(E_{d'}(m)) = \bot$.

2)
$$\mathsf{D}_d(\mathsf{E}_{d'}(m))=\perp$$
, for any $d
eq d'$ and $m\in\{0,1\}^*.$

Before we start

• Fix a (multiple message) semantically-secure private-key encryption scheme (*G*', E, D) with

$$\bigcirc G'(1^n) = U_n$$

2
$$D_d(E_{d'}(m)) = \bot$$
, for any $d \neq d'$ and $m \in \{0, 1\}^*$.

Can we achieve such scheme?

Before we start

• Fix a (multiple message) semantically-secure private-key encryption scheme (*G*', E, D) with

$$G'(1^n) = U_n$$

2)
$$D_d(E_{d'}(m)) = \bot$$
, for any $d \neq d'$ and $m \in \{0, 1\}^*$.

Can we achieve such scheme?

Boolean circuits: gates, wires, inputs, outputs, values, computation

Let *C* be Boolean a circuit from $\{0,1\}^{\ell}$ to $\{0,1\}^{m}$ and let $n \in \mathbb{N}$

Let *C* be Boolean a circuit from $\{0,1\}^{\ell}$ to $\{0,1\}^{m}$ and let $n \in \mathbb{N}$

• Let W and G be the (indices) of wires and gates of C.

Let *C* be Boolean a circuit from $\{0,1\}^{\ell}$ to $\{0,1\}^{m}$ and let $n \in \mathbb{N}$

- Let \mathcal{W} and G be the (indices) of wires and gates of C.
- For any $w \in W$, associate two random 'keys" $k_0^w, k_w^1 \in \{0, 1\}^n$.

Let *C* be Boolean a circuit from $\{0,1\}^{\ell}$ to $\{0,1\}^{m}$ and let $n \in \mathbb{N}$

- Let \mathcal{W} and G be the (indices) of wires and gates of C.
- For any $w \in W$, associate two random 'keys" $k_0^w, k_w^1 \in \{0, 1\}^n$.
- For g ∈ G with input wires i, j and output wire h, let T(g) be the following table

input wire i	input wire <i>j</i>	output wire h	hidden output wire
k_i^0	k_j^0	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k_i^0	k_j^1	$k_{h}^{g(1,0)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k_i^1	k_j^0	$k_{h}^{g(0,1)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k_i^1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Figure: Table for gate *g*, with input wires *i* and *j*, and output wire *h*.

• For $g \in G$, let $\widetilde{T}(g)$ be a *random* permutation of the fourth column of T(g)

- For $g \in G$, let $\widetilde{T}(g)$ be a *random* permutation of the fourth column of T(g)
- For x ∈ {0,1}^ℓ and w ∈ W, let C(x)_w be the value the computation of C(x) assigns to w.

- For $g \in G$, let $\widetilde{T}(g)$ be a *random* permutation of the fourth column of T(g)
- For x ∈ {0,1}^ℓ and w ∈ W, let C(x)_w be the value the computation of C(x) assigns to w.
- Given $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in G}, \{k_i^{C(x)_w}\}_{w \in \mathcal{I}}$, for some $x \in \{0, 1\}^{\ell}$, and $\{(w, k_w)\}_{w \in \mathcal{O}}$, we can efficiently compute C(x)

- For $g \in G$, let $\widetilde{T}(g)$ be a *random* permutation of the fourth column of T(g)
- For x ∈ {0,1}^ℓ and w ∈ W, let C(x)_w be the value the computation of C(x) assigns to w.
- Given $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in G}, \{k_i^{C(x)_w}\}_{w \in \mathcal{I}}$, for some $x \in \{0, 1\}^{\ell}$, and $\{(w, k_w)\}_{w \in \mathcal{O}}$, we can efficiently compute C(x)
- No other information about x leaks!

- For $g \in G$, let $\widetilde{T}(g)$ be a *random* permutation of the fourth column of T(g)
- For x ∈ {0,1}^ℓ and w ∈ W, let C(x)_w be the value the computation of C(x) assigns to w.
- Given $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in G}, \{k_i^{C(x)_w}\}_{w \in \mathcal{I}}$, for some $x \in \{0, 1\}^{\ell}$, and $\{(w, k_w)\}_{w \in \mathcal{O}}$, we can efficiently compute C(x)
- No other information about *x* leaks!
- Can we use garbled circuit for secure computation?

Let $f: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \times \{0,1\}^m \times \{0,1\}^m$ and let *C* be a circuit that computes *f*.

Let $f: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \times \{0,1\}^{m} \times \{0,1\}^{m}$ and let *C* be a circuit that computes *f*. Let (S, R) be a secure protocol for OT.

Let $f: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \times \{0,1\}^{m} \times \{0,1\}^{m}$ and let *C* be a circuit that computes *f*. Let (S, R) be a secure protocol for OT. Let \mathcal{I}_1 and \mathcal{I}_2 be the input wires of x_1 and x_2 (A and B inputs), and let \mathcal{O}_1 and \mathcal{O}_2 be the output wires of A and B.

Let $f: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \times \{0,1\}^{m} \times \{0,1\}^{m}$ and let *C* be a circuit that computes *f*. Let (S, R) be a secure protocol for OT. Let \mathcal{I}_1 and \mathcal{I}_2 be the input wires of x_1 and x_2 (A and B inputs), and let \mathcal{O}_1 and \mathcal{O}_2 be the output wires of A and B.

Protocol 8 ((A, B)**)**

Common input: 1^{*n*}. A/B's input: $x_1/x_2 \in \{0, 1\}^{\ell}$

- A prepares random $\{k_w = (k_w^0, k_w^1)\}_{w \in \mathcal{W}}$ and $\widetilde{\mathcal{T}}$, and sends $\widetilde{\mathcal{T}}, \{(w, k_w^{C(x_1, \cdot)_w})\}_{w \in \mathcal{I}_1} \text{ and } \{(w, k_w)\}_{w \in \mathcal{O}_2} \text{ to } \mathsf{B}.$
- ② $\forall w \in \mathcal{I}_2$, A and B interact in $(S(k_w), R(C(\cdot, x_2)_w))(1^n)$.
- S computes the (garbled) circuit, and sends $\{(w, k_w^{C_{x_1, x_2}[w]})\}_{w \in \mathcal{O}_2} \text{ to } A.$
- The parties compute $f(x_1, x_2)_1$ and $f(x_1, x_2)_2$ respectively.

Protocol 8 securely computes *f* (in the semi-honest model)

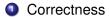
Protocol 8 securely computes *f* (in the semi-honest model)

Proof:

Correctness

Protocol 8 securely computes f (in the semi-honest model)

Proof:



B's privacy

Protocol 8 securely computes *f* (in the semi-honest model)

Proof:

- Correctness
- B's privacy Immediately follows from the security of the OT
- A's privacy

Protocol 8 securely computes *f* (in the semi-honest model)

Proof:

- Correctness
- B's privacy Immediately follows from the security of the OT
- A's privacy The simulator for B puts random values in \widetilde{T} , $\{(w, k_w^{C(x_1, \cdot)_w})\}_{w \in \mathcal{I}_1}$ and $\{(w, k_w^{C(\cdot, x_2)_w})\}_{w \in \mathcal{I}_1}$, and sets $\{(w, k_w)\}_{w \in \mathcal{O}_2}$ according to $f_2(x_1, x_2)$.

• Efficiently computable f

Efficiently computable *f* Both parties first compute C_f – a circuit that compute *f* for inputs of the right length

Efficiently computable *f* Both parties first compute C_f – a circuit that compute *f* for inputs of the right length

• Hiding C?

- Efficiently computable *f* Both parties first compute C_f a circuit that compute *f* for inputs of the right length
- Hiding C? All but its size

The parties prove that they act "honestly"

The parties prove that they act "honestly"

Make the parties chose set random coin properly

The parties prove that they act "honestly"

- Make the parties chose set random coin properly
- Before each step, the parties prove in ZK that they followed the prescribed protocol(with respect to the random-coins chosen above)

The parties prove that they act "honestly"

- Make the parties chose set random coin properly
- Before each step, the parties prove in ZK that they followed the prescribed protocol(with respect to the random-coins chosen above)

Course Summary

See diagram

• "Few" reductions

- "Few" reductions
- Environment security (e.g., UC)

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- and....