
Secure Multiparty Computation:
Introduction

Ran Cohen (Tel Aviv University)

Scenario 1: Private Dating

Alice and Bob meet at a pub

• If both of them want to date together – they will find out

• If Alice doesn’t want to date – she won’t learn his intentions

• If Bob doesn’t want to date – he won’t learn her intentions

Scenario 1: Private Dating

Alice and Bob meet at a pub

• If both of them want to date together – they will find out

• If Alice doesn’t want to date – she won’t learn his intentions

• If Bob doesn’t want to date – he won’t learn her intentions

Solution: use a trusted bartender

Scenario 2: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed

Scenario 2: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed

Solution: use a trusted auctioneer

Scenario 3: Private Set Intersection

Intelligence agencies holds lists of potential terrorists

• The would like to compute the intersection

• Any other information must remain secret

MI5 FBI

Mossad

Scenario 3: Private Set Intersection

Intelligence agencies holds lists of potential terrorists

• The would like to compute the intersection

• Any other information must remain secret

Solution: use a trusted party

Trust me
MI5 FBI

Mossad

Scenario 4: Online Poker

Play online poker reliably

Scenario 4: Online Poker

Play online poker reliably

Solution: use a trusted party

Secure Multiparty Computation

• In all scenarios the solution of an external
trusted third party works

• Trusting a third party is a very strong assumption

• Can we do better?

• We would like a solution with the same security
guarantees, but without using any trusted party

X

Secure Multiparty Computation

Goal: use a protocol to emulate the trusted party

X X
X

The Setting

• Parties 𝑃1, … , 𝑃𝑛 (modeled as interactive TM)

• Party 𝑃𝑖 has private input 𝑥𝑖

• The parties wish to jointly compute a (known)
function 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛

• The computation must preserve certain security
properties, even is some of the parties collude
and maliciously attack the protocol

• Normally, this is modeled by an external
adversary 𝒜 that corrupts some parties and
coordinates their actions

Auction Example – Security Requirements

– Correctness: 𝒜 can’t win using lower bid than the
highest

– Privacy: 𝒜 learns an upper bound on all inputs,
nothing else

– Independence of inputs: 𝒜 can’t bid one dollar more
than the highest (honest) bid

– Fairness: 𝒜 can’t abort the auction if his bid isn’t the
highest (i.e., after learning the result)

– Guaranteed output delivery: 𝒜 can’t abort
(stronger than fairness, no DoS attacks)

Security Requirements

– Correctness: parties obtain correct output
(even if some parties misbehave)

– Privacy: only the output is learned (nothing else)

– Independence of inputs: parties cannot choose their
inputs as a function of other parties’ inputs

– Fairness: if one party learns the output, then all
parties learn the output

– Guaranteed output delivery: all honest parties learn
the output

Example – Computing Sum
• Each 𝑃𝑖 has input 𝑥𝑖 < 𝑀 (work modulo 𝑀)

• Want to compute ∑𝑥𝑖

• Is the protocol is secure facing one corruption (semi-honest)?

𝑟 ← ℤ𝑀

𝑚1 = 𝑥1 + 𝑟

𝑚2 = 𝑥2 +𝑚1

𝑚3 = 𝑥3 +𝑚2
𝑚4 = 𝑥4 +𝑚3

𝑚5 = 𝑥5 +𝑚4

𝑚6 = 𝑥6 +𝑚5

𝑚6 − 𝑟

Example – Computing Sum
• Each 𝑃𝑖 has input 𝑥𝑖 < 𝑀 (work modulo 𝑀)

• Want to compute ∑𝑥𝑖

• Is the protocol is secure facing one corruption (semi-honest)?

• What about two corruptions?

𝑟 ← ℤ𝑀

𝑚1 = 𝑥1 + 𝑟

𝑚2 = 𝑥2 +𝑚1

𝑚3 = 𝑥3 +𝑚2
𝑚4 = 𝑥4 +𝑚3

𝑚5 = 𝑥5 +𝑚4

𝑚6 = 𝑥6 +𝑚5

𝑚6 − 𝑟

How to Define Security

Option 1: property-based definition

• Define a list of security requirements for the task

• Used for Byzantine agreement, coin flipping, etc.

• Difficult to analyze complex tasks

• How do we know if all concerns are covered?

Option 2: the real/ideal paradigm

• Whatever an adversary can achieve by attacking a real
protocol can also be achieved by attacking an ideal
computation involving a trusted party

• Formalized via a simulator

Ideal World
1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛
3) Trusted party sends 𝑦 to each party

Real World
Parties run a protocol 𝜋 on inputs 𝑥1, … , 𝑥𝑛

Simulation-Based Security

Simulation-Based Security

≈

Distinguisher 𝒟

Simulation-Based Security

≈

Distinguisher 𝒟 Adversary 𝒜

Simulation-Based Security

≈

Distinguisher 𝒟Simulator 𝒮 Adversary 𝒜

Simulation-Based Security

≈

The distinguisher 𝒟:

• Gives inputs to parties

• Gets back output from parties and from adversary/simulator

• Guesses which world it is real/ideal

Protocol 𝜋 securely computes 𝑓 if ∀𝒜 ∃𝒮 ∀𝒟 distinguishing success is “small”

Sanity check

≈

• Fairness• Correctness

• Guaranteed output delivery• Privacy

• Independence of inputs

Advantages of this Approach

• Very general – captures any computational task

• The security guarantees are simple to understand
Simply imagine a trusted party computes the task

• No security requirements are ”missed”

• Supports sequential modular composition

– Security remains when secure protocols run sequentially

– A single execution at a time

– Arbitrary messages can be sent between executions

• Useful for modular design of protocols

Sequential Modular Composition

• Design a protocol in a hybrid model

– Similar to the stand-alone real world

– A trusted party helps to compute some functionality 𝑓

– In rounds with calls to 𝑓 no other messages are allowed

• Theorem (informal)

– Protocol 𝜋 securely computes 𝑔 in the 𝑓-hybrid model

– Protocol 𝜌 securely computes 𝑓

– Then, protocol 𝜋𝜌 securely computes 𝑔 in the real world

Replace ideal calls to 𝑓 with real protocol 𝜌

The Definition Cont’d

A definition of an MPC task involves defining:

• Functionality: what do we want to compute?

• Security type: how strong protection do we want?

• Adversarial model: what do we want to protect against?

• Network model: in what setting are we going to do it?

The Functionality

• The code of the trusted party

• Captures inevitable vulnerabilities

• Sometimes useful to let the functionality talk to the
ideal-world adversary (simulator)

• We will focus on secure function evaluation (SFE),
the trusted party computes 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛

– Deterministic vs. randomized

– Single public output vs. private outputs

– Reactive vs. non-reactive

Security Type

• Computational: a PPT distinguisher

– The real & ideal worlds are computationally
indistinguishable

• Statistical: all-powerful distinguisher,
negligible error probability

– The real & ideal worlds are statistically close

• Perfect: all-powerful distinguisher,
zero error probability

– The real & ideal worlds are identically distributed

Adversarial Model (1)

• Adversarial behavior

– Semi honest: honest-but-curious. corrupted parties
follow the protocol honestly, 𝒜 tries to learn more
information. Models inadvertent leakage

– Fail stop: same as semi honest, but corrupted parties
can prematurely halt. Models crash failures

– Malicious: corrupted parties can deviate from the
protocol in an arbitrary way

Adversarial Model (2)

• Adversarial power

– Polynomial time: computational security,
normally requires cryptographic assumptions,
e.g., encryption, signatures, oblivious transfer

– Computationally unbounded: an all-powerful
adversary, information-theoretic security

Adversarial Model (3)

• Adversarial corruption

– Static: the set of corrupted parties is defined before the
execution of the protocol begins. Honest parties are
always honest, corrupted parties are always corrupted

– Adaptive: 𝒜 can decide which parties to corrupt during
the course of the protocol, based on information it
dynamically learns

– Mobile: 𝒜 can “jump” between parties
Honest parties can become corrupted,
corrupted parties can become honest again

Adversarial Model (4)

• Number of corrupted parties

– Threshold adversary:
Denote by 𝑡 ≤ 𝑛 an upper bound on # corruptions

 No honest majority, e.g., two-party computation

 Honest majority, i.e., 𝑡 < 𝑛/2

 Two-thirds majority, i.e., 𝑡 < 𝑛/3

– General adversary structure:
Protection against specific subsets of parties

Communication Model (1)

• Point-to-point: fully connected network of
pairwise channels.

– Unauthenticated channels

– Authenticated channels: in the computational setting

– Private channels: in the IT setting

 Partial networks: star, chain

• Broadcast: additional broadcast channel

Communication Model (2)

• Message delivery:

– Synchronous: the protocol proceeds in rounds.
Every message that is sent arrives within an known
time frame

– Asynchronous (eventual delivery): the adversary can
impose arbitrary (finite) delay on any message

– Fully Asynchronous: the adversary has full control
over the network, can even drop messages

Execution Environment

• Stand alone:

– A single protocol execution at any given time
(isolated from the rest of the world)

• Concurrent general composition:

– Arbitrary protocols are executed concurrently

– An Internet-like setting

– Requires a strictly stronger definition
Captured by the universal composability (UC) framework

– Impossible in general without a trusted setup assumption
(e.g., common reference string)

Relaxing the Definition

• Recall the ideal world (with guaranteed output delivery)

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛
3) Trusted party sends 𝑦 to each party

• This ideal world is overly ideal

• In general, fairness cannot be achieved without an
honest majority [Cleve’86]

• A relaxed definition is normally considered

Security with Abort

• Ideal world without fairness and guaranteed output
delivery:

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛

3) Trusted party sends 𝑦 to the adversary

4) The adversary responds with continue/abort

5) If continue, trusted party sends 𝑦 to all parties
If abort, trusted party sends ⊥ to all parties

• Correctness, privacy, independence of inputs are
satisfied

Prevalent Models
• In the seminar we will consider:

– Adversary: semi honest / malicious with static corruptions

– Synchronous P2P network with a broadcast channel

– Stand-alone setting

• Computational setting

– PPT adversary & distinguisher (computational security)

– Arbitrary number of corruptions 𝑡 < 𝑛

– Authenticated channels

• Information-theoretic setting

– All powerful adversary & distinguisher (perfect/statistical)

– Honest majority 𝑡 < 𝑛/2 (if 𝑡 < 𝑛/3 no need for broadcast)

– Secure channels

Oblivious Transfer

𝑚0, 𝑚1 𝑏 ∈ 0,1

𝑚𝑏

Feasibility Results

• Malicious setting

– For 𝑡 < 𝑛/3, every 𝑓 can be securely computed with
perfect security [BGW’88,CCD’88]

– For 𝑡 < 𝑛/2, every 𝑓 can be securely computed with
statistical security [RB’89]

– For 𝑡 < 𝑛, assuming OT, every 𝑓 can be securely computed
with abort and computational security [GMW’87]

• Semi-honest setting

– For 𝑡 < 𝑛/2, every 𝑓 can be securely computed with
perfect security [BGW’88,CCD’88]

– For 𝑡 < 𝑛, assuming OT, every 𝑓 can be securely computed
with computational security [GMW’87]

Outline of the Seminar
• Lecture 2: definitions

• Lectures 3-7: semi-honest setting

– Yao’s garbled circuit

– Oblivious transfer

– GMW protocol [Goldreich, Micali, Wigderson’87]

– BGW protocol [Ben-Or, Goldwasser, Wigderson’88]

– BMR protocol (constant-round MPC) [Beaver, Micali, Rogaway’90]

• Lectures 8-11: malicious setting
– GMW compiler

– IKOS zero-knowledge proof

– Cut and choose (Yao’s protocol for malicious)

– Sigma protocols

• Lecture 12: specific functionalities (median, PSI)

Summary

• Secure multiparty protocols emulate
computations involving a trusted party

• Impressive feasibility results: every task that can
be computed can also be computed securely

• Many different models and settings

• Exciting and active field – many open questions

