Secure Multiparty Computation:
Introduction

Ran Cohen (Tel Aviv University)

Scenario 1: Private Dating

Alice and Bob meet at a pub
* |f both of them want to date together — they will find out
* |f Alice doesn’t want to date — she won’t learn his intentions

e |If Bob doesn’t want to date — he won’t learn her intentions

Scenario 1: Private Dating

Alice and Bob meet at a pub

* |f both of them want to date together — they will find out
 |f Alice doesn’t want to date — she won’t learn his intentions

e |If Bob doesn’t want to date — he won’t learn her intentions

Solution: use a trusted bartender

Scenario 2: Private Auction

Many parties wish to execute a private auction
* The highest bid wins
* Only the highest bid (and bidder) is revealed

Scenario 2: Private Auction

Many parties wish to execute a private auction

* The highest bid wins
* Only the highest bid (and bidder) is revealed

Solution: use a trusted auctioneer

Scenario 3: Private Set Intersection

Intelligence agencies holds lists of potential terrorists
 The would like to compute the intersection
* Any other information must remain secret

Scenario 3: Private Set Intersection

Intelligence agencies holds lists of potential terrorists
 The would like to compute the intersection

* Any other information must remain secret
Solution: use a trusted party

N
"’%
n :n 2,

N~ Y| Mossad

Trust me

FBI

Scenario 4: Online Poker

Play online poker reliably

Scenario 4: Online Poker

Play online poker reliably

Solution: use a trusted party

Secure Multiparty Computation

In all scenarios the solution of an external
trusted third party works

Trusting a third party is a very strong assumption
Can we do better?

We would like a solution with the same security
guarantees, but without using any trusted party

Secure Multiparty Computation

Goal: use a protocol to emulate the trusted party

AUCTION
&

A ‘.}
at

The Setting

Parties P4, ..., P, (modeled as interactive TM)
Party P; has private input x;

The parties wish to jointly compute a (known)
functiony = f(xq, ..., x;,)

The computation must preserve certain security
properties, even is some of the parties collude
and maliciously attack the protocol

Normally, this is modeled by an external
adversary A that corrupts some parties and
coordinates their actions

Auction Example — Security Requirements

— Correctness: A can’t win using lower bid than the
highest

— Privacy: A learns an upper bound on all inputs,
nothing else

— Independence of inputs: A can’t bid one dollar more
than the highest (honest) bid

— Fairness: A can’t abort the auction if his bid isn’t the
highest (i.e., after learning the result)

— Guaranteed output delivery: A can’t abort
(stronger than fairness, no DoS attacks)

Security Requirements

— Correctness: parties obtain correct output
(even if some parties misbehave)

— Privacy: only the output is learned (nothing else)

— Independence of inputs: parties cannot choose their
inputs as a function of other parties’ inputs

— Fairness: if one party learns the output, then all
parties learn the output

— Guaranteed output delivery: all honest parties learn
the output

Example — Computing Sum

* Each P; hasinput x; < M (work modulo M)
* Want to compute) x;
* |Is the protocol is secure facing one corruption (semi-honest)?

Example — Computing Sum

Each P; has input x; < M (work modulo M)
Want to compute) x;
Is the protocol is secure facing one corruption (semi-honest)?

What about two corruptions?

How to Define Security

Option 1: property-based definition

* Define a list of security requirements for the task
* Used for Byzantine agreement, coin flipping, etc.
e Difficult to analyze complex tasks

* How do we know if all concerns are covered?

Option 2: the real/ideal paradigm

* Whatever an adversary can achieve by attacking a real
protocol can also be achieved by attacking an ideal
computation involving a trusted party

e Formalized via a simulator

ldeal World

1) Each party sends its input to the trusted party

Xy)

)

f(xq, ...

3) Trusted party sends y to each party

2) The trusted party computes y

Real World

Parties run a protocol on inputs (x4, ..., x;,)

Simulation-Based Security

e g =

~E
s 2 LA T TS ’
o o TGV - (. oy TGGVh -
ey ';‘Z'f‘.'i.'"' L)

Based Security

Simulation-

Distinguisher D

Based Security

Simulation-

Adversary A

Distinguisher D

Based Security

Simulation-

Adversary A

Distinguisher D

Simulator §

Simulation-Based Security

The distinguisher D:

. Gives inputs to parties

. Gets back output from parties and from adversary/simulator
. Guesses which world it is real/ideal

Protocol m securely computes f if VA 35 VD distinguishing success is “small”

’—-—~~ ’—l——

Sanity check

e Correctness e Fairness

e Privacy e Guaranteed output delivery

« Independence of inputs

Advantages of this Approach

Very general — captures any computational task

The security guarantees are simple to understand
Simply imagine a trusted party computes the task

No security requirements are "missed”
Supports sequential modular composition
— Security remains when secure protocols run sequentially

— Asingle execution at a time
— Arbitrary messages can be sent between executions

Useful for modular design of protocols

Sequential Modular Composition

* Design a protocol in a hybrid model
— Similar to the stand-alone real world
— A trusted party helps to compute some functionality f
— In rounds with calls to f no other messages are allowed

* Theorem (informal)
— Protocol securely computes g in the f-hybrid model

— Protocol p securely computes f
— Then, protocol ©” securely computes g in the real world

i Replace ideal calls to f with real protocol p

The Definition Cont’d

A definition of an MPC task involves defining:

* Functionality: what do we want to compute?

e Security type: how strong protection do we want?
 Adversarial model: what do we want to protect against?

* Network model: in what setting are we going to do it?

The Functionality

The code of the trusted party
Captures inevitable vulnerabilities

Sometimes useful to let the functionality talk to the
ideal-world adversary (simulator)

We will focus on secure function evaluation (SFE),
the trusted party computes y = f(xq, ..., X,)

— Deterministic vs. randomized
— Single public output vs. private outputs

— Reactive vs. non-reactive

Security Type

Computational: a PPT distinguisher

— The real & ideal worlds are computationally

indistinguishable

Statistical: all-powerful distinguisher,

negligible error proba

— The real & ideal wor

oility

ds are statistically close

Perfect: all-powerful distinguisher,

zero error probability

— The real & ideal worlds are identically distributed

Adversarial Model (1)

e Adversarial behavior

— Semi honest: honest-but-curious. corrupted parties
follow the protocol honestly, A tries to learn more
information. Models inadvertent leakage

— Fail stop: same as semi honest, but corrupted parties
can prematurely halt. Models crash failures

— Malicious: corrupted parties can deviate from the
protocol in an arbitrary way

Adversarial Model (2)

* Adversarial power

Polynomial time: computational security,
normally requires cryptographic assumptions,
e.g., encryption, signatures, oblivious transfer

Computationally unbounded: an all-powerful
adversary, information-theoretic security

Adversarial Model (3)

* Adversarial corruption

— Static: the set of corrupted parties is defined before the
execution of the protocol begins. Honest parties are
always honest, corrupted parties are always corrupted

— Adaptive: A can decide which parties to corrupt during
the course of the protocol, based on information it
dynamically learns

— Mobile: A can “jump” between parties
Honest parties can become corrupted,
corrupted parties can become honest again

Adversarial Model (4)

 Number of corrupted parties

— Threshold adversary:
Denote by t < n an upper bound on # corruptions

» No honest majority, e.g., two-party computation
» Honest majority, i.e.,, t <n/2
» Two-thirds majority, i.e., t <n/3

— General adversary structure:
Protection against specific subsets of parties

Communication Model (1)

* Point-to-point: fully connected network of
pairwise channels.

— Unauthenticated channels

— Authenticated channels: in the computational setting
— Private channels: in the IT setting
» Partial networks: star, chain

e Broadcast: additional broadcast channel

Communication Model (2)

* Message delivery:

— Synchronous: the protocol proceeds in rounds.
Every message that is sent arrives within an known
time frame

— Asynchronous (eventual delivery): the adversary can
impose arbitrary (finite) delay on any message

— Fully Asynchronous: the adversary has full control
over the network, can even drop messages

Execution Environment

Stand alone:

— Assingle protocol execution at any given time

(isolated from the rest of the world)

Concurrent general composition:

Arbitrary protocols are executed concurrently
An Internet-like setting

Requires a strictly stronger definition
Captured by the universal composability (UC) framework

Impossible in general without a trusted setup assumption
(e.g., common reference string)

Relaxing the Definition

Recall the ideal world (with guaranteed output delivery)
1) Each party sends its input to the trusted party

2) The trusted party computes y = (x4, ..., X;,)

3) Trusted party sends y to each party

This ideal world is overly ideal

In general, fairness cannot be achieved without an
honest majority [Cleve’86]

A relaxed definition is normally considered

Security with Abort

|deal world without fairness and guaranteed output
delivery:

1)
2)
3)
4)
5)

Each party sends its input to the trusted party
The trusted party computes y = f(xq, ..., X;,)
Trusted party sends y to the adversary

The adversary responds with continue/abort

If continue, trusted party sends vy to all parties
If abort, trusted party sends 1 to all parties

Correctness, privacy, independence of inputs are
satisfied

Prevalent Models

* Inthe seminar we will consider:
— Adversary: semi honest / malicious with static corruptions
— Synchronous P2P network with a broadcast channel
— Stand-alone setting

 Computational setting
— PPT adversary & distinguisher (computational security)
— Arbitrary number of corruptions t < n
— Authenticated channels

* Information-theoretic setting
— All powerful adversary & distinguisher (perfect/statistical)
— Honest majorityt < n/2 (ift < n/3 no need for broadcast)
— Secure channels

Oblivious Transfer

Feasibility Results

 Malicious setting

Fort < n/3, every f can be securely computed with
perfect security [BGW’88,CCD’88]

Fort < n/2, every f can be securely computed with
statistical security [RB’89]

For t < n, assuming OT, every f can be securely computed
with abort and computational security [GMW’87]

 Semi-honest setting

Fort < n/2, every f can be securely computed with
perfect security [BGW’88,CCD’'88]

For t < n, assuming OT, every f can be securely computed
with computational security [GMW’87]

Outline of the Seminar

Lecture 2: definitions

Lectures 3-7: semi-honest setting

Yao’s garbled circuit

Oblivious transfer

GMW protocol [Goldreich, Micali, Wigderson’87]

BGW protocol [Ben-Or, Goldwasser, Wigderson’88]

BMR protocol (constant-round MPC) [Beaver, Micali, Rogaway’90]

Lectures 8-11: malicious setting

GMW compiler
IKOS zero-knowledge proof
Cut and choose (Yao’s protocol for malicious)

Sigma protocols

Lecture 12: specific functionalities (median, PSI)

Summary

Secure multiparty protocols emulate
computations involving a trusted party

Impressive feasibility results: every task that can
be computed can also be computed securely

Many different models and settings

Exciting and active field — many open questions

