
COIN FLIPPING WITH CONSTANT BIAS IMPLIES ONE-WAY FUNCTIONS∗

IFTACH HAITNER† AND ERAN OMRI‡

Abstract. It is well known (cf., Impagliazzo and Luby [FOCS ’89]) that the existence of almost all “interesting” crypto-
graphic applications, i.e., ones that cannot hold information theoretically, implies one-way functions. An important exception
where the above implication is not known, however, is the case of coin-flipping protocols. Such protocols allow honest parties to
mutually flip an unbiased coin, while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol
by much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias do imply one-way
functions, and, very recently, Maji, Prabhakaran, and Sahai [FOCS ’10] proved the same for constant-round protocols (with
any non-trivial bias). For the general case, however, no such implication was known.

We make progress towards answering the above fundamental question, showing that (strong) coin-flipping protocols safe

against a constant bias (concretely,
√
2−1
2
− o(1)) imply one-way functions.

Keywords: coin-flipping protocols; one-way functions;

∗A preliminary version appeared as [13].
†School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il. Research partly supported by the Check

Point Institute for Information Security, the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), Israel
Science Foundation (Grant No. 1076/11) and US-Israel BSF (Grant No. 2010196).
‡Department of Computer Science and Mathematics, Ariel University. E-mail: omrier@ariel.ac.il. Research supported

by the European Research Council as part of the ERC project LAST. Most of the work was done while at Bar-Ilan University.

1. Introduction. A central focus of modern cryptography has been to investigate the weakest possible
assumptions under which various cryptographic primitives exist. This direction of research has been quite
fruitful, and minimal assumptions are known for a wide variety of primitives. In particular, it has been
shown that one-way functions (i.e., easy to compute but hard to invert functions) imply pseudorandom gen-
erators, pseudorandom functions, symmetric-key encryption/message authentication, commitment schemes,
and digital signatures [10, 11, 15, 14, 23, 24, 9, 25], where one-way functions were shown also to be implied
by each of these primitives [18].

An important exception for which we have failed to prove the above rule, is that of coin-flipping protocols.
A coin-flipping protocol [3] allows the honest parties to mutually flip an unbiased coin, where even a cheating
(efficient) party cannot bias the outcome of the protocol by much. While one-way functions are known to
imply coin-flipping protocols [3, 23, 15], the other direction is less clear: Impagliazzo and Luby [18] showed
that negligible-bias coin-flipping protocols (i.e., an efficient cheating strategy cannot make the common output
to be 1, or to be 0, with probability greater than 1

2 +neg(n)) implies one-way functions. Very recently, Maji,
Prabhakaran, and Sahai [20] proved the same implication for (1

2 −1/ poly(n))-bias constant-round protocols,
where n is the security parameter of the protocol. We have no such implications, however, for any other
choice of parameters.

1.1. Our Result. In this work, we make progress towards answering the above fundamental question,
showing that (strong) coin-flipping protocols, safe against a constant bias, imply one-way functions. We
note that previous works [18, 20] also applied to weak coin-flipping protocols (in some restricted setting)1.
Our result, however, does not apply to weak coin-flipping protocols and we only consider strong coin-flipping
protocols (see Section 6 for further discussion). We prove the following theorem.

Theorem 1.1 (informal). The existence of a (
√
2−1
2 − o(1))-bias coin-flipping protocol (of any round

complexity) implies one-way functions.

1.2. Related Results. As mentioned above, Impagliazzo and Luby [18] showed that negligible-bias
coin-flipping protocols imply one-way functions, and Maji et al. [20] proved the same for (1

2 − 1/poly(n))-
bias constant-round protocols. [20] also proved that of (1

4 − o(1))-bias coin-flipping protocols implies that
BPP 6= NP. Finally, it is well known that (1

2 − υ(n))-bias coin-flipping protocols, for any υ(n) > 0, implies
that BPP 6= PSPACE. All the above results extend to weak coin-flipping protocols: in such protocols, each
party has a different predetermined value towards which it cannot bias the output coin.2 A quick overview
on the techniques underlying the above results, can be found in Section 1.3.3. A summery of the known
results is given in Figure 1.1.

Information theoretic coin-flipping protocols (i.e., whose security holds against all powerful adversaries)
were shown to exist in the quantum world; Mochon [21] presents an ε-bias quantum weak coin-flipping

protocol for any ε > 0. Chailloux and Kerenidis [4] present a
(√

2−1
2 − ε

)
-bias quantum strong coin-flipping

protocol for any ε > 0 (which is optimal, [19]). A key step in [4] is a reduction from strong to weak
coin-flipping protocols, which holds also in the classical world (see Section 6 for further discussion).

A related line of work considers fair coin-flipping protocols. In this setting the honest party is required to
always output a bit, whatever the other party does. In particular, a cheating party might bias the output coin
just by aborting. We know that one-way functions imply fair (1/

√
m)-bias coin-flipping protocol [1, 6], where

m being the round complexity of the protocol, and this quantity is known to be tight for O(n/ log n)-round
protocols with fully black-box reductions [8]. Oblivious transfer, on the other hand, implies fair 1/m-bias
protocols [22, 2], which is known to be tight [6].

1.3. Our Technique. Let (A,B) be a balanced coin-flipping protocol (i.e., the common output of the
honest parties is a uniformly chosen bit), and let f be the following efficiently computable function:

f(rA, rB, i) = Trans(rA, rB)i,Out(rA, rB)

1See Section 2.2, for the definition of strong coin-flipping protocols and weak coin-flipping protocols.
2While such protocols are strictly weaker then full-fledged coin flipping protocols, they are still useful in many settings. For

instance, when Alice and Bob are trying to decide who is doing the dishes.
3As mentioned above, while previous results also apply to weak coin-flipping, our result only applies to strong coin-flipping.

Coin-Flipping Protocol Type Implication Paper

(1
4 − o(1))-bias BPP 6= NP Maji et al. [20]

Non-trivial bias, constant round BPP 6= NP Zachos [26]
Non-trivial bias BPP 6= PSPACE Folklore
Negligible bias Existence of OWFs Impagliazzo and Luby [18]

(1
2 − o(1))-bias, constant round Existence of OWFs Maji et al. [20]

(
√
2−1
2 − o(1))-bias, strong coin-flipping Existence of OWFs This work3

Fig. 1.1: Results summery.

where rA and rB are the random coins of A and B respectively, Trans(rA, rB)i is the first i messages exchanged
in the execution (A(rA),B(rB)), and Out(rA, rB) is the common output of this execution (i.e., the coin).
Assuming that one-way functions do not exist, it follows that distributional one-way functions do not exist
either [18], and therefore there exists an efficient inverter Inv that given a random output y of f , samples a
random preimage of y. Concretely, for any p ∈ poly there exists a ppt Inv such that the following holds:

SD((X, f(X)), (Inv(f(X ′)), f(X ′))) ≤ 1/p(|X|)(1.1)

where X and X ′ are uniformly distributed over the domain of f , and SD stands for statistical distance. In
the following we show how to use the above Inv to bias the output of (A,B).

Note that given a random partial transcript t of (A,B), the call Inv(t, 1) returns a random pair of random
coins for the parties that is (1) consistent with t, and (2) yields a common output 1. In other words, one can
use Inv to sample a random continuation of t which leads to a 1-leaf — a full transcript of (A,B) in which
the common output is 1. As we show below, such capability is an extremely useful tool for a dishonest party
trying to bias the outcome of this protocol. In particular, we consider the following cheating strategy A for
A (a cheating strategy B for B is analogously defined): given that the partial transcript is t, A uses Inv to
sample a pair of random coins (rA, rB) that is consistent with t and leads to a 1-leaf (A aborts if Inv fails
to provide such coins), and then acts as the honest A does on the random coins rA, given the transcript t.
Namely, at each of its turns A takes the first step of a random continuation that leads to a 1-leaf.

Assuming that Inv behaves as its ideal variant that returns a uniform random preimage on any transcript,
it is not that hard to prove (see outline in Section 1.3.1) that eitherA or B can significantly bias the outcome of
the protocol. Proving that the same holds with respect to the real inverter, however, is not trivial. Algorithm
Inv is only guaranteed to work well on random transcript/output pairs, as induced by a random output of f
(namely, a transcript/output pair defined by a random honest execution of (A,B)). A random execution of
(A,B) or of (A,B) (i.e., with one party being controlled by the adversary) might, however, generate a query
distribution that is very far from that induced by f .

Fortunately, we manage to prove (and this is the crux of our proof, see outline in Section 1.3.2) that
the following holds: We call a query non-typical, if its probability mass with respect to the execution of
(A,B) (or of (A,B)) is much larger than its mass with respect to the output distribution of f . We first show
that even if both A and B totally fail on such non-typical queries, then either A or B can significantly bias
the outcome of the protocol assuming access to the ideal sampler. Since on typical queries the real sampler
should perform almost as well as its ideal version, we conclude that the cheating probability of either A or
B is high, also when the cheating strategies are using the real sampler.

1.3.1. When Using the Ideal Sampler. Consider a mental experiment in which the cheating strate-
gies A and B (both using the ideal sampler) are interacting with each other. It is not hard to see that the
common output of (A,B) in this case is always one. Moreover, the transcript distribution induced by such
an execution, is that of a random execution of the “honest” protocol (A,B) conditioned that the common
output is 1 (i.e., a random 1-leaf). In particular, the probability of each 1-leaf in a random execution of
(A,B) is twice its probability in (A,B).

The probability of a 1-leaf t to happen, is the product of the probabilities that in each stage of the
protocol the relevant party sends the “right” message. Such a product can be partitioned into two parts:

2

the part corresponding to the actions of A, and the part corresponding to the actions of B. In particular,
either A or B contributes a factor of value at least

√
2 to the probability of t. Namely, the probability of

a 1-leaf t in either (A,B) or in (A,B), is
√

2 times its probability in (A,B). Summing over all 1-leaves, it
follows that the common output of either (A,B) or (A,B) is one with probability at least

√
2 · 12 = 1/

√
2.

That is, either A or B can bias the output of (A,B) by at least 1√
2
− 1

2 =
√
2−1
2 .

The above intuition can be made formal in proving the success probability of the cheating strategies with
respect to the ideal sampler. In the actual treatment, given in Section 4, however, we use a slightly different
approach, and prove this result inductively up the protocol tree. This inductive approach is useful when
considering the attacks with respect to the real sampler. Below, we mention that the mental experiment in
which A and B interact with each other does give the intuition for what we call the “compensation lemma”
(see Theorem 5.7), which plays a crucial role in proving the success of the attacks when using the real
sampler.

1.3.2. Using the Real Sampler. By the discussion we made earlier, it suffices to prove that the
following holds: either A or B can significantly bias the output of the protocol, when given access to the
ideal sampler, even if both cheating strategies are assumed to fail completely when asking non-typical queries.
Towards this end, we partition the non-typical queries into two: (1) queries (t, 1) such that the probability
to visit t in (A,B) or (A,B), is much larger than this probability with respect to f (i.e., super polynomial
in n larger than Pr[f(X) = (t, ∗)]), and (2) queries (t, 1) such that the probability of ending in a 1-leaf
conditioned on t is small (i.e., Pr[f(X) = (t, 1) | f(X) = (t, ∗)] is small).

Indeed, the main lemma of this this work, Theorem 5.1, considers the cheating strategies A and B
with access to the ideal sampler. Theorem 5.1 states that either A or B can bias the output of (A,B) by

almost
√
2−1
2 , even if they completely fail on non-typical queries. The proof of Theorem 1.1 (restated as

Theorem 5.2), then follows by using the fact that on typical queries, replacing the ideal sampler with the
real inverter may cause very little effect. In the following, we outline the proof of Theorem 5.1, focusing on
the first type of non-typical queries, which we find to be the more interesting case.

For q ∈ N, let UnBalA contain the transcripts whose weights induced by (A,B) are at least q times larger
then their weights in the honest protocol (UnBalB is defined similarly). Using the intuition of the mental
experiment described in Section 1.3.1, one can show that the probability of every transcript t induced by a
random execution of (A,B) is at most twice its probability in a random (honest) execution of (A,B). Hence,
the following “compensation effect” happens: if the probability of a transcript t in (a random execution of)
(A,B) is q times larger than its probability in (A,B), then the probability of t in (A,B) is q times smaller
than this value. We conclude that UnBalA is visited by BIdeal with probability at most 1/q.

To show that both A and B can be assumed to fail completely when asking queries in UnBalA (the
argument for UnBalB is analogous), we consider another mental experiment. In this mental experiment, we
replace the probabilities of ending up with a 1-leaf, upon reaching a transcript in UnBalA by associating
a new value to each such transcript. These values are no longer probability measures. Specifically, for all
t ∈ UnBalA, we replace the probability that (A,B) ends up in a 1-leaf conditioned on t with the value 1/

√
q

and replace the probability that (A,B) ends up in a 1-leaf conditioned on t with the value
√
q (this is only

a mental experiment, so we can allow these values to be larger than 1). Using a similar approach to that
used in Section 1.3.1, we can prove that in the above experiment, it is still true that either A or B biases

the output of (A,B) by
√
2−1
2 .

Finally, we note that we can safely fail both cheating strategies on UnBalA almost without changing
their overall success probability in the above experiment. Specifically, A will not suffer much since it visits
these nodes with probability at most 1 and gains only 1/

√
q upon visiting them. On the other hand, B will

not suffer much since it visits these nodes with probability at most 1/q and gain only
√
q upon visiting them

(hence, these nodes contributes at most 1/
√
q to its overall success). Observe that the probabilities induced

by an execution of (A,B) (or of (A,B)) on typical transcripts in the real scenario, as well as, the success
probability of the adversary upon visiting these transcripts, are exactly the same as in the above mental

experiment. We conclude that either A or B biases the output of (A,B) by
√
2−1
2 − 1/ poly, even assuming

that both cheating strategies totally fail on non-typical queries.

3

1.3.3. Perspective. The sampling strategy we use above was inspired by the “smooth sampling”
approach used by [5, 12, 16] in the setting of parallel repetition of interactive arguments to sample a random
wining strategy for the cheating prover. Such approach can be thought of as an “hedged greedy” strategy,
using the recent terminology of Maji et al. [20], as it does not necessarily choose the best move at each
step (the one that maximize the success probability of the honest strategy), but rather hedges its choice
according to the relative success probability. [20] used a different hedged greedy strategy to bias any coin-
flipping protocol by 1

4 − o(1). They then show how to implement this strategy using an NP-oracle, yielding
that (1

4 − o(1))-bias coin-flipping protocols imply BPP 6= NP. Their proof, however, does not follow through
using a one-way functions inverter, and thus, does not yield that such protocols imply that one-way functions
do not exist.

Impagliazzo and Luby [18] used a more conservative method to bias a coin-flipping protocol by 1√
m

(where m is the protocol round complexity). Their cheating strategy (which, in turn, was inspired by [7])
follows the prescribed one (i.e., acts honestly), while deviating from it at most once through the execution.
In particular, at each step it estimates its potential gain from deviating from the prescribed strategy. If
this gain is large enough, it deviates from the prescribed strategy, and then continues as the honest party
would. Since their strategy only needs to estimates the potential gain before deviating from the prescribed
strategy, it is rather straightforward to prove that it can be implemented using a one-way function inverter
(in particular, the query distribution induced by their strategy is simply the output distribution of the
one-way function).

Finally, we mention that the cheating strategy used by [20] to prove their result for constant-round
protocols, takes a very different approach then the above. Specifically, their cheating strategy uses a one-
way function inverter to implement (with close resemblance) the well-known recursive PSPACE-attack on
such protocols. Unlike the above greedy strategies, the running time of this recursive approach is doubly-
exponential in the round complexity of the protocol (which is still efficient for constant-round protocols).

Paper Organization. General notations and definitions used throughout the paper are given in Sec-
tion 2. Our adversarial strategy to bias any coin-flipping protocol is presented in Section 3. In Section 4 we
analyze this strategy assuming access to an ideal sampler. Finally, in Section 5 we extend this analysis to
the real sampler.

2. Preliminaries.

2.1. Notation. We use calligraphic letters to denote sets, uppercase for random variables, and lowercase
for values. For an integer n ∈ N, we let [n] = {1, · · · , n}.

A function µ : N → [0, 1] is negligible, if µ(n) = n−ω(1), where neg denotes an arbitrary negligible
function. (In particular, f(n) = neg(n) means that f is negligible, where f(n) > neg(n) means that f is
not negligible.) We let poly denote an arbitrary polynomial, and let ppt denote the set of probabilistic
algorithms (i.e., Turing machines) that run in strict polynomial time. Given a two-party protocol (A,B)
and inputs iA and iB, we let Out(A(iA),B(iB)) and (A(iA),B(iB)) denote the (joint) output and transcript
respectively, of the execution of (A,B) with inputs iA and iB.

Given a random variable X, we write x ← X to indicate that x is selected according to X. Similarly
given a finite set S, we let s ← S denote that s is selected according to the uniform distribution on S.
We adopt the convention that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be the probability that
when x ← X, we have f(x) = x. We write Un to denote the random variable distributed uniformly over
{0, 1}n. Given a measure M over a set S, the support of M is defined as Supp(M) := {s ∈ S : M(s) > 0}.
The statistical distance of two distributions P and Q over a finite set U , denoted SD(P,Q), is defined as
1
2 ·
∑
u∈U |P (u)−Q(u)|. We use the following notion of measure dominance.

Definition 2.1 (dominating measure). A measure M is said to δ-dominate a measure M ′, if:

1. Supp(M ′) ⊆ Supp(M), and
2. M(y) ≥ δ ·M ′(y), for every y ∈ Supp(M ′).

We stress that it is meaningful to consider δ-dominance even for 0 < δ ≤ 1. Indeed, for our purposes, it
will suffice for a measure M to 1/ poly-dominate a measure M ′.

4

2.2. Coin-Flipping Protocols. In a coin-flipping protocol the honest execution outputs an unbiased
coin, where no (efficient) cheating party can bias the outcome by much. This intuitive description is captured
using the following definition.

Definition 2.2. A polynomial-time protocol (A,B) is a δ-bias coin-flipping protocol, if the following
hold:

1. Pr[Out(A,B)(n) = 0] = Pr[Out(A,B)(n) = 1] = 1
2 , and

2. for any ppt’s A and B, any c ∈ {0, 1} and all large enough n:
Pr[Out(A,B)(n) = c],Pr[Out(A,B)(n) = c] ≤ 1

2 + δ(n).
In the case that δ(n) = neg(n), we simply say that (A,B) is a coin-flipping protocol. It is common to also
consider protocols with weaker correctness guarantee than the one we defined above, where with some small
probability the output of the protocol in neither 0 nor 1. All the results we present in this paper can be
easily generalized to handle such relaxations.

Remark 2.3 ((partially) fair coin flipping). There are settings in which honest parties are required to
always output a bit c ∈ {0, 1}, even if the other party arbitrarily deviates from the prescribed protocol (and
specifically, upon premature abort by the other party). Constructing coin-flipping protocols in this setting is
a much more challenging task. Specifically, it is known that constructing an m-round δ-bias coin-flipping
protocol for δ ∈ o(1/m) is unconditionally impossible. We mention that since any δ-bias coin-flipping protocol
in this setting (i.e., with partial fairness) is also a δ-bias coin-flipping protocol in our setting, our results
hold for such protocols as well.

A weaker variant of coin-flipping protocols (that we do not consider in this paper) is that of weak
coin-flipping protocols. Such protocols are useful in the case that parties have (a priori known) opposite
preferences.

Definition 2.4. A polynomial-time protocol (A,B) is a weak δ-bias coin-flipping protocol, if the following
hold:

1. Pr[Out(A,B)(n) = 0] = Pr[Out(A,B)(n) = 1] = 1
2 , and

2. there exist bits cA 6= cB ∈ {0, 1} such that the following holds for any ppt’s A and B, and large
enough n:
Pr[Out(A,B)(n) = cA],Pr[Out(A,B)(n) = cB] ≤ 1

2 + δ(n).
In the case that δ(n) = neg(n), we simply say that (A,B) is a weak coin-flipping protocol.

2.3. One-Way Functions and Distributional One-Way Functions. An efficiently computable
function is one-way if it is hard to invert it on a random output.

Definition 2.5 (one-way functions). A polynomially-computable function f : {0, 1}n 7→ {0, 1}`(n) is
one-way, if the following holds for any ppt A.

Pr
y←f(Un)

[A(y) ∈ f−1(y)] = neg(n)

A seemingly weaker requirement is being distributional one-way, meaning that it is hard to sample a random
preimage of a random output. The following definition is due to Impagliazzo and Luby [18].

Definition 2.6 (distributional one-way functions). A polynomially-computable function f : {0, 1}n 7→
{0, 1}`(n) is distributional one-way, if there exists p ∈ poly such that the following holds for any ppt A.

SD ((Un, f(Un)), ((A(f(U ′n)), f(U ′n))) ≥ 1

p(n)

Clearly, any one-way function is also a distributional one-way function. While the other implication is not
necessarily always true, it was shown in Impagliazzo and Luby [18] showed that the existence of distributional
one-way functions imply that of (standard) one-way functions. In particular, [18] proved that if one-way
functions do not exists, then any efficiently computable function has an inverter of the following form. The
full proof of this implication can be found in [17].

Definition 2.7 (γ-inverter). Let f : D → R be a deterministic function. An algorithm Inv is called a
γ-inverter of f the following holds.

SD ((U, f(U)), (Inv(f(U ′)), f(U ′))) ≤ γ,
5

where U,U ′ are uniformly distributed in D. We call a 0-inverter of f , an ideal inverter of f . Alternatively,
an ideal inverter of f is an algorithm that on y ∈ R, returns a uniformly chosen element (preimage) in
f−1(y).

Lemma 2.8 ([18, Lemma 1]). Assume that one-way functions do not exit, then for any polynomial
computable function f : {0, 1}n 7→ {0, 1}`(n) and any p ∈ poly, there exists a ppt Inv that is a 1/p(n)-
inverter of f , for infinitely many n’s. Note that nothing is guaranteed when invoking a good inverter for
f (i.e., γ-inverter for some small γ) on an arbitrary distribution D. Yet, the following lemma states that if
D is dominated by the output distribution of f , then such good inverters are useful.

Lemma 2.9. Let f : D → R be a deterministic function and let Ideal be an ideal inverter of f . Let A be
an oracle-aided algorithm that makes at most m oracle queries to Ideal, where all A’s queries are in R. For
i ∈ [m], let the random variable Qi describe the i’th query of A, where Qi is set to ⊥ if the i’th query is not
asked, and define the measure Mi as follows:

Mi(y) =

{
Pr[Qi = y] y ∈ R,
0 otherwise.

The probability is taken over the randomness of the algorithm A and the randomness of the ideal inverter
Ideal. Let U denote the uniform distribution over D and suppose that f(U) δ-dominates Mi for all i ∈ [m]
(according to Theorem 2.1), then the following holds for any γ-inverter Inv of f .

SD
(
AIdeal,AInv

)
≤ γ ·m

δ
.

Proof. We prove the lemma in two steps. In the first step, we prove that for the case that m = 1 it holds
that

SD
(
AIdeal,AInv

)
≤ γ

δ
.

Then, we prove the case where m > 1, by reducing it back to the case of m = 1 (by considering a slightly
different algorithm).

The case of m = 1. Since the A behaves exactly the same in both cases up to the point in which the query
is asked to the inverter, and since upon the same query/answer pair, the algorithm still behaves exactly the
same in both cases, we may bound our discussion to the statistical distance between the distributions on
query/answer pairs according to each random process. We denote by Q the random variable describing the
query (note, that this random variable is identically distributed in both scenarios). We denote by XIdeal the
random variable describing the answer given in an execution with the ideal inverter, and denote by XInv the
random variable describing the answer given in an execution with the γ-inverter Inv. Since in case Q = ⊥
we are guaranteed that XIdeal = XInv = ⊥, we have that

SD
(
AIdeal,AInv

)
≤ 1

2
·

∑
q∈R,a∈{0,1}∗

∣∣∣∣Pr
Ideal

[Q = q ∧ Ideal(q) = a]− Pr
Inv

[Q = q ∧ Inv(q) = a]

∣∣∣∣
=

1

2
·

∑
q∈R,a∈{0,1}∗

|Pr[Q = q] · Pr[Ideal(q) = a]− Pr[Q = q] · Pr[Inv(q) = a]|

=
1

2
·

∑
q∈R,a∈{0,1}∗

|Pr[Q = q] · (Pr[Ideal(q) = a]− Pr[Inv(q) = a])| .

6

Since M1 is δ-dominated by f(U), we have that Pr[Q = q] = Mi(q) ≤ Pr[f(U)=q]
δ for every q ∈ R. Hence,

SD
(
AIdeal,AInv

)
≤ 1

2
·

∑
q∈R,a∈{0,1}∗

∣∣∣∣Pr[f(U) = q]

δ
· (Pr[Ideal(q) = a]− Pr[Inv(q) = a])

∣∣∣∣
=

1

δ
· 1

2
·

∑
q∈R,a∈{0,1}∗

|Pr[f(U) = q] · Pr[Ideal(q) = a]− Pr[f(U) = q] · Pr[Inv(q) = a])|

=
1

δ
· SD ((U, f(U)), (Inv(f(U ′)), f(U ′))) ≤ γ

δ
.

The case of m > 1. Define a sequence {Hi}mi=0 of hybrid random variables, by letting the i’th hybrid describe
the output of the algorithm A in an execution where the first i queries of A are answered by Ideal and the
remaining m− i queries are answered by Inv. Specifically, we have that Hm ≡ AIdeal and that H0 ≡ AInv. By
the triangle inequality, we have that

SD
(
AIdeal,AInv

)
= SD (H0, Hm)

≤
m∑
i=1

SD (Hi−1, Hi)

It, therefore, suffices to prove that for every i it holds that SD (Hi−1, Hi) ≤ γ
δ . Observe that except for the

i’th query, both random variables describe the same random process, that can be viewed as an algorithm
that asks only a single oracle query. Furthermore, since the first i−1 queries were asked to the ideal inverter,
it holds that the i’th query is indeed distributed as Qi. Thus, the lemma follows by applying the proof for
the case where m = 1.

3. The Attack. Let (A,B) be a coin-tossing protocol. In the following we define adversarial strategies
for both A and B to bias the output of the protocol towards 1. The strategies for biasing the output towards
0 are defined analogously.

3.1. Notation. We associate the following random variables with an (honest) execution of (A,B).
Throughout, we let n be the security parameter of the protocol and omit it whenever its value is clear from
the context. We assume for simplicity that the protocol’s messages are single bits, and naturally view a valid
execution of the protocol as a path in the binary tree T = Tn, whose nodes are associated with all possible
(valid) transcripts. The root of T , corresponding to the empty transcript, is denoted by the empty string
λ, and the children of a node t (if exist) are denoted by t ◦ 0 and t ◦ 1 (‘◦’ stands for string concatenation),
corresponding to the two (possibly partial) executions with these transcripts. A node with no descendants
(associated with a full transcript) is called a leaf, where we assume for simplicity that a non-leaf node has
exactly two descendants. Given a node t, we let |t| denote its depth, and for i ∈ [|t|] let ti denote the prefix
of length i of t, which describes the i’th node on the path from λ to t (e.g., t0 = λ).

We call a transcript t an A node [resp., B node], if this is A’s [resp., B’s] turn to send the next message,
where without loss of generality the root λ is an A node. We also assume that the parties always exchange
m = m(n) messages, and that each party uses s = s(n) random coins, denoted rA and rB respectively. Given
a pair of s-long random strings (rA, rB), we let Trans(rA, rB) = (A(rA),B(rB)) (i.e., the full transcript induced
by the execution of (A(rA),B(rB))).

For t ∈ T , let Uni(t) denote a random sample of (rA, rB), conditioned on Trans(rA, rB)|t| = t. Given

random coins rA ∈ {0, 1}s, we let NextA(rA; t) be the next message sent by A with random coins rA after seeing
the transcript t, and define the random variable A(t) as NextA(RA; t), where (RA, ∗)← Uni(t). [NextB(rB; t)
and B(t) are defined analogously.] Finally, we assume without loss of generality that the transcript of an
(honest) execution of the protocol always defines an output, 0 or 1 (consistent for both parties). For a leaf
t, we let Vt be the output of the protocol determined by this leaf, where if t is an internal node, we define

7

Vt as

Vt = E
(rA,rB)←Uni(t)

[VTrans(rA,rB)](3.1)

Namely, Vt is the probability that (A,B) outputs 1, conditioned that t is the current transcript.
Similarly, we associate the following random variables with an execution of (A,B), where A is a cheat-

ing strategy for A: we denote the random coins used by A by rA, and for t ∈ T let UniA(t) denote a
random sample of (rA, rB), conditioned on (A(rA),B(rB))|t| = t. Given random coins rA ∈ {0, 1}∗, we let
NextA(rA; t) be the next message sent by A with random coins rA after seeing the transcript t, and define
the random variable A(t) as NextA(RA; t), where (RA, ∗) ← UniA(t). [NextB(rB; t) and B(t) are defined
analogously.] Finally, we define V At as

V At = E
(rA,rB)←UniA(t)

[V(A(rA),B(rB))],(3.2)

where we set V(A(rA),B(rB)) = 0, if (A(rA),B(rB)) aborts. Namely, V At is a lower bound on the probability
that (A,B) outputs 1, conditioned that t is the current transcript. [V Bt is defined analogously.]

3.2. The Adversary A. We now present an adversarial strategy A for A, designed to bias the outcome
of the protocol towards 1 (the adversarial strategy B for B is defined analogously). In each round A uses a
“sampling oracle” Samp to sample a value for the coins of A, and then acts as the (honest) A would, given
these coins and the current transcript. Roughly speaking, the objective of Samp is to return a random pair
of coins (rA, rB) consistent with t (i.e., Trans(rA, rB)|t| = t), which leads to a 1-node (i.e., VTrans(rA,rB) = 1).
In the following we analyze the success probability of A when using different implementations for Samp.
Specifically, in Section 4 we consider an “ideal sampler” (which is not necessarily efficient). Then, in Section 5,
we consider a more realistic implementation of the sampler (specifically, using the inverter that will stem
from the assumption that one-way functions do not exist). Before describing and analyzing each of these
samplers, we first give the formal description of A.

Algorithm 3.1 (Adversary A).
Input: Security parameter n.
Oracle: Samp.
Operation: Let t be the current transcript.

1. Halt if t is a leaf node.
2. Let (rA, ∗)← Samp(t). Abort if rA =⊥.
3. Send NextA(rA; t) to B.

Given an instantiation of Samp, we view ASamp as a random algorithm whose random coin are those used
by Samp (independent coins for each call).

4. Using the Ideal Sampler. Our “ideal sampler” Ideal is defined as follows: on input t ∈ T , Ideal
returns a random sample (rA, rB)← Uni(t), conditioned on VTrans(rA,rB) = 1. Where Ideal returns ⊥, in case
Vt = 0. The following lemma asserts that at least one of the parties has a good cheating strategy given
oracle access to this sampler.

Lemma 4.1. For any n ∈ N and any transcript t ∈ Tn, it holds that

V A
Ideal

t · V B
Ideal

t ≥ Vt.

Assuming that Vλn = 1/2, it holds that either V A
Ideal

λ ≥ 1/
√

2 or V B
Ideal

λ ≥ 1/
√

2. Namely, either AIdeal or
BIdeal can bias the output of the protocol by 1√

2
− 1

2 .

Proof. [Proof of Theorem 4.1] We prove the lemma using induction up the protocol tree. The proof is
immediate for a leaf node and for an internal node t with Vt = 0 (i.e., when Ideal(t) =⊥). In the following
t is a fixed internal node (with Vt > 0). Thus, for the sake of simplicity of notation, we let A = AIdeal,

V = Vt, and V A = V A
Ideal

t . Similarly, for j ∈ {0, 1} we let Vj = Vtj and V Aj = V A
Ideal

tj . [V B and V Bj are

defined analogously.] We need to prove that V A · V B ≥ V , assuming that V Aj · V Bj ≥ Vj for both j ∈ {0, 1}.
8

We assume that t is an A node (the other case is analogous). Let β = Pr[A(t) = 1] (i.e., the probability that
the next message of the honest A is 1). Note that V = β · V1 + (1− β) · V0, and that

Pr[A(t) = 1]

= Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ 1 | VTrans(rA,rB) = 1]

=
Pr(rA,rB)←Uni(t)[Trans(rA, rB)|t|+1 = t ◦ 1 ∧ VTrans(rA,rB) = 1]

Pr(rA,rB)←Uni(t)[VTrans(rA,rB) = 1]

=
β · V1
V

,

where the last equation is by a simple chain rule, i.e., since

β = Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ 1], and

V1 = Pr
(rA,rB)←Uni(t)

[VTrans(rA,rB) = 1 | Trans(rA, rB)|t|+1 = t ◦ 1].

Thus,

• V A = Pr[A(t) = 1] · V A1 + Pr[A(t) = 0] · V A0 = β·V1

V · V A1 + (1−β)·V0

V · V A0 , and
• V B = Pr[A(t) = 1] · V B1 + Pr[A(t) = 0] · V B0 = β · V B1 + (1− β) · V B0 .

Using the induction hypothesis, we get that

V A · V B =

(
β · V1
V
· V A1 +

(1− β) · V0
V

· V A0
)
·
(
β · V B1 + (1− β) · V B0

)
=
β2 · V1
V

· V A1 · V B1 +
(1− β)2 · V0

V
· V A0 · V B0 +

β(1− β)

V
· (V1 · V A1 · V B0 + V0 · V A0 · V B1)

≥ β2 · V 2
1

V
+

(1− β)2 · V 2
0

V
+
β · (1− β) · V1 · V0

V
·
(
V A1
V A0

+
V A0
V A1

)
.

Where since V 2 = (β · V1 + (1− β) · V0)2 = β2 · V 2
1 + (1− β)2 · V 2

0 + 2 · β · (1− β) · V1 · V0, it follows that

V A · V B ≥ β2 · V 2
1

V
+

(1− β)2 · V 2
0

V
+
β · (1− β) · V1 · V0

V
·
(
V A1
V A0

+
V A0
V A1

)
= V +

β · (1− β) · V1 · V0
V

·
(
V A1
V A0

+
V A0
V A1
− 2

)

Thus, to prove that V A ·V B ≥ V it suffices to prove that
V A1
V A0

+
V A0
V A1
≥ 2. We will show that

(
V A1
V A0

+
V A0
V A1
− 2
)
·

V A1 · V A0 ≥ 0, which also suffices, since V A1 and V A0 are both positive values. Indeed,(
V A1
V A0

+
V A0
V A1
− 2

)
· V A1 · V A0 = (V A1)2 + (V A0)2 − 2V A1 · V A0

= (V A1 − V A0)2

≥ 0

5. Moving to an Efficient Sampler. Our goal in this section is to use the above analysis of the
success probability of our adversaries when given access to the ideal sampler, for analyzing their success
probability when given access to an efficient sampler. The accuracy of such an inverter will be parametrized
by a function 1/p for some p ∈ poly. In the following we fix such p.

9

Assuming that one-way functions do not exists, our efficient sampler is defined as follows: let f :
{0, 1}s(n) × {0, 1}s(n) × {0, . . . ,m(n)} be defined as

f(rA, rB, i) = Trans(rA, rB)i, VTrans(rA,rB)

Namely, f(rA, rB, i) outputs the i’th node in the execution of (A(rA),B(rB)) and the outcome coin induced
by the leaf (i.e., full transcript) of this execution. Given a node t ∈ Tn, the sampler Realp returns Invf (t, 1),
where Invf is the distributional inverter for f guaranteed by Theorem 2.8 with respect to accuracy parameter
1/p.4

Notice that while Theorem 2.8 tells us that Invf samples well over a random output of f , the distribution
induced by the calls of ARealp might be very different from this distribution. While we cannot bound the
difference between these two distributions, we prove that there exists a high-probability event conditioned
upon these distributions are close enough. Loosely speaking, we first show that Theorem 4.1 still (almost)
holds even if both AIdeal and BIdeal fail on their “non-typical” queries to Ideal – the calls that happen with
probability very different than the one induced by f . Since Realp does similarly to Ideal on the typical queries,

it follows that V A
Realp

λ ·V BRealp

λ is almost as large as Vλ, and therefore, either ARealp or BRealp can significantly
bias the outcome of the protocol.

In Theorem 5.1, stated below, we formally capture the above intuition regarding AIdeal and BIdeal (with
access to the ideal sampler). We denote by w(t) the probability that the node t is visited in a random

execution of (A,B) and by wA
Ideal

(t) the probability of this visit in a random execution of (AIdeal,B). [wB
Ideal

(t)
is defined analogously.] Recall that we omit n from the notation whenever its value is clear from the context.
Specifically, we let λ denote the root of Tn, and Vλ = E[Out(A,B)(1n)].

Lemma 5.1. Let (A,B) be a coin-tossing protocol as above. For any q ∈ poly and for any n ∈ N, there
exists a set E ⊆ {t ∈ Tn : Vt > 0} such that the following holds:

1. For any t ∈ E, it holds that max{wAIdeal

(t), wB
Ideal

(t)} ∈ O(q(n)5 · w(t) · Vt), and

2. V AE
Ideal

λ · V BE
Ideal

λ ≥ Vλ − 1
q(n) ,

where AE acts as A does, but aborts if a node outside of E is reached. [BE is defined analogously.]

Proving Theorem 5.1 is the main contribution of this section, but first let us use it for proving Theo-
rem 5.2.

Theorem 5.2 (restating Theorem 1.1). Let (A,B) be a coin-tossing protocol with Vλ = E[Out(A,B)(1n)].
Assuming that one-way functions do not exist, then for any g ∈ poly there exists a pair of efficient (cheat-
ing) strategies A and B such that the following holds: for infinitely many n’s, for each j ∈ {0, 1} either

Pr[(A(j),B)(1n) = j] or Pr[(B(j),B)(1n) = j] is greater than
√
V jn − 1

g(n) , where V 1
n = Vλ and V 0

n = 1− Vλ.

In particular, for the case of Vλ = 1
2 , one party can “bias the outcome” of (A,B) by almost 1√

2
− 1

2 .

Proof. We focus on j = 1 where the proof for j = 0 follows analogously. We prove the theorem by
considering the success probabilities of the adversaries ARealp and BRealp (with access to an efficient inverter
Invf) on the set E ⊆ Tn guaranteed by Theorem 5.1. Namely, the success probabilities of AERealp and BERealp .

We show that if Invf is “good enough”, then they will do almost as well as AE Ideal and BE Ideal would. Towards
this end, we show that the distribution induced by f on a random input, (1/ poly)-dominates (according
to Theorem 2.1) both query distributions induced by AE Ideal and BE Ideal. Thus, we can apply Theorem 2.9
to show that each adversary behaves almost identically when given access to Ideal as when given access to
Invf . Finally, we remark that, while AERealp and BERealp may not be efficient (since they need to abort on
t /∈ E), they serve as a mental experiment and provide lower bounds on the success probabilities of ARealp

and BRealp , respectively. We next give the formal argument.

Let g′(n) := g(n)√
V 1

, where we assume without loss of generality that g(n) ≥ 1√
V 1

(otherwise, the statement

is trivial). Let Df (y) be the probability that a random output of f equals y. Note that the following holds

4We assume for simplicity that the security parameter of the protocol is determined by its (even partial) transcript, and
therefore, the domain of f in the calls to Invf is well defined.

10

for any t ∈ Tn:

Df (t, 1) := Pr[f(U2s(n), In) = (t, 1)]

= Pr[In = |t|] · Pr[Trans(U2s(n))|t| = t ∧ VTrans(U2s(n)) = 1]

=
1

m(n) + 1
· w(t) · Vt

where In is uniformly distributed over {0, . . . ,m(n)}. Let E ⊆ Tn be the set guaranteed by Theorem 5.1
with respect to q(n) = 2 · g′(n). It follows that

max{wA
Ideal

(t), wB
Ideal

(t)} ∈ O(q(n)5 ·m(n) ·Df (t, 1))(5.1)

for any t ∈ E . In other words, the distributions induced by the queries of AE Ideal and BE Ideal on the range of
f are δ-dominated by the distribution of a random output of f , for δ = 1/O(q(n)5 ·m(n)).

Fix n ∈ N such that the inverter Invf (guaranteed by Theorem 2.8) is a 1/p(n)-inverter for f , and
let Realp be the sampler described above (i.e., Realp(t) returns Invf (t, 1)). For Samp ∈ {Ideal,Realp}, let

EAE
Samp

be the algorithm that emulates a random execution of (AESamp,B) and outputs the outcome of this

execution, where AE is as in Theorem 5.1 [EBE
Samp

is defined analogously]. For i ∈ {0, . . . ,m(n)}, let Qi
be the value of the i’th Ideal-query made in the execution of EAE

Ideal

(set to ⊥ if no such call was made).
Equation (5.1) yields that for Pr[Qi = (t, 1)] ∈ O(q(n)5 ·m(n) ·Df (t, 1)) any i ∈ [m(n)] and for any t ∈ E .
Thus, Theorem 2.9 yields that

SD(EAE
Ideal

, EAE
Realp

) ∈
O
(
q(n)5 ·m(n)2

)
p(n)

< 1/8g′(n),

for the proper choice of p. Therefore,

V AE
Realp

λ = Pr[EAE
Realp

= 1] ≥ Pr[EAE
Ideal

= 1]− 1/4g′(n) = V AE
Ideal

λ − 1/4g′(n).(5.2)

Doing the analogous calculation for V BE
Realp

λ and using Theorem 5.1, it follows that

V AE
Realp

λ · V BE
Realp

λ ≥ (V AE
Ideal

λ − 1/4g′(n)) · (V BE
Ideal

λ − 1/4g′(n))(5.3)

= V AE
Ideal

λ · V BE
Ideal

λ −
V AE

Ideal

λ + V BE
Ideal

λ

4g′(n)
+

1

2g′(n)2

≥ V 1 − 1

q(n)
− 1

2g′(n)
= V 1 − 1

g′(n)
.

Since V A
Realp

λ ≥ V AE
Realp

λ and V B
Realp

λ ≥ V BE
Realp

λ (on the nodes in E the strategies AERealp and ARealp act

identically, and AERealp fails on the other nodes), it follows that

V A
Realp

λ · V B
Realp

λ ≥ V 1 − 1

g′(n)
.(5.4)

It follows that

V 1 − 1

g′(n)
= V 1 −

√
V 1

g(n)
≥ V 1 − 2 ·

√
V 1

g(n)
+

1

g(n)2
=

(√
V 1 − 1

g(n)

)2

,

where the inequality holds since g(n) ≥ 1√
V 1

. In particular, either V A
Realp

λ or V B
Realp

λ are larger than√
V 1 − 1

g′(n) ≥
√
V 1 − 1

g(n) , which completes the proof of the theorem.

11

5.1. Proving Theorem 5.1. Towards proving Theorem 5.1 we identify the nodes (queries) in T = Tn
that are potentially “non typical” (i.e., either Vt is small or max{wAIdeal

(t), wB
Ideal

(t)} is large), and prove that
by modifying AIdeal or BIdeal to totally fail on such nodes, we hardly change their overall success probability.
Alternatively, if AIdeal and BIdeal abort whenever they reach a non-typical node (as do AE Ideal and BE Ideal),
then they will only give away a 1/ poly fraction of their success probability. The proof then follows by taking
E to be the set of “typical” nodes in T .

We next give a slightly more detailed overview of the proof. For simplicity, in the discussion below, we
(implicitly) assume that Vλ is constant (in the formal proof, we deal with any value of Vλ). We need to
show that the set E satisfies both of the requirements in Theorem 5.1. Proving that the first requirement
is satisfied will come for free, simply by the way we define non-typical nodes. To show that E satisfies the
second requirement (i.e., that AIdeal and BIdeal can indeed abort on nodes outside E without losing much), we
partition the non-typical nodes into two sets. The first set, denoted Small, contains those nodes for which
Vt ∈ O(1

q2). The second set, denoted UnBal, contains the nodes whose weights induced by AIdeal or BIdeal

are Ω(q2) times larger then their weight in an honest execution of the protocol. On a very intuitive level,
handling the set Small is fairly easy: consider a mental experiment in which we (artificially) set a new “success

probability” for such nodes, by setting V A
Ideal

t = V B
Ideal

t =
√
Vt for every t ∈ Small. Since V A

Ideal

t · V BIdeal

t ≥ Vt,
the proof of Theorem 4.1 will still go through with respect to the above experiment. Namely, it will still

hold that V A
Ideal

λ · V BIdeal

λ ≥ Vλ. To then allow aborting on nodes in Small, we observe that neither AIdeal nor
BIdeal gains much on any node t ∈ Small (at most

√
Vt ∈ O(1/q)). Hence, even if Small is reached with high

probability, it contributes an overall success probability of O(1/q).
Handling the unbalanced nodes inside UnBal, on the other hand, seems much more challenging. These

nodes might have arbitrary expected values (i.e., Vt) and are reached by one of the adversaries with high
probability. As such, they may contribute significantly to the success probability of the cheating parties.
Fortunately, by making a critical use of the query distribution induced by the ideal sampler, we are able to
prove the following “compensation lemma”: a node t whose weight with respect to AIdeal is k times larger

from its real weight (i.e., wA
Ideal

(t) = k · w(t)), has weight with respect to BIdeal that is k time smaller than
its real weight. Hence, the set UnBal can be separated into two disjoint subsets UnBalA and UnBalB, where
UnBalB is almost never visited by AIdeal and UnBalA is almost never visited by BIdeal. Now, we handle each
of these sets in a similar manner to the way we handled the nodes in Small (for simplicity we only consider
here the set UnBalA): consider the mental experiment in which for every t ∈ UnBalA we modify the values of

V A
Ideal

t and V B
Ideal

t such that V A
Ideal

t = 1/q and V B
Ideal

t = q (this is only a mental experiment, so we do not care

that these values might be larger than 1). Since V A
Ideal

t · V BIdeal

t = 1 ≥ Vt, the proof of Theorem 4.1 still goes
through with respect to this experiment as well. Furthermore, we can safely fail both cheating strategies
on UnBalA without changing their overall success probability too much. Specifically, AIdeal will not suffer
much because its success probability on these nodes is bounded by 1

q (i.e., it has gained at most O(1 · 1q = 1
q)

from these nodes), and BIdeal will not suffer much since it almost never visits these nodes (i.e., it has gained
O(q · 1

q2 = 1
q) from these nodes).

We now work towards formalizing the above discussion. We assume that Vλ ≥ 1/q, since otherwise the
lemma follows trivially, and start with formally defining the different subsets of T we considered above. We

define the relative weights of t ∈ T as WrelA
Ideal

(t) = wA
Ideal

(t)
w(t) and WrelB

Ideal

(t) = wB
Ideal

(t)
w(t) , let

UnBalA := {t ∈ T : WrelA
Ideal

(t) > 16 · q3}(5.5)

UnBalB := {t ∈ T : WrelB
Ideal

(t) > 16 · q3},(5.6)

and let UnBal = UnBalA ∪ UnBalB. Finally, we let

Small := {t ∈ T \ UnBal : Vt <
1

16 · q2
}(5.7)

and let E = T \ (Small ∪ UnBal). The following fact is immediate.

Claim 5.3. For any t ∈ E it holds that max{wAIdeal

(t), wB
Ideal

(t)} ∈ O(q5 · w(t) · Vt).
12

Proof. For any t ∈ E , it holds that t /∈ UnBalA. Hence,

wA
Ideal

(t) = WrelA
Ideal

(t) · w(t) ≤ 16 · q3 · w(t) ≤ 28 · q5 · w(t) · Vt,

where the last inequality follows since t /∈ Small (and therefore 16 · q2 · Vt ≥ 1). To prove that E satisfies

the second property of Theorem 5.1, we present a pair of random variables Y A
Ideal

t and Y A
Ideal

t , such that the
following holds for λ (the root of T):

1. Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and

2. V AE
Ideal

λ ≥ Y AIdeal

λ − 1/2q and V BE
Ideal

λ ≥ Y BIdeal

λ − 1/2q.

The variables Y A
Ideal

λ and Y B
Ideal

λ are defined below, but intuitively they measure the success probability ofAIdeal

and BIdeal respectively, in the mental experiment where their success probability on internal nodes outside E
is changed according to the informal description above. The above immediately yields that V AE

Ideal

λ ·V BE
Ideal

λ ≥
Vλ − 1

q , completing the proof of Theorem 5.1.

Since our goal is to bound (from below) the success probabilities of AE Ideal and BE Ideal, it suffices to
restrict the discussion to the nodes in T that have non-zero probability of being reached in executions with
AE Ideal and BE Ideal. This set of nodes defines a tree (which is defined below and denoted T ′) that can
alternatively be defined as the set of all nodes in T that have no proper ancestor in Small ∪ UnBal. We use
the following random variables:

Definition 5.4. For t ∈ T ′ := Supp((A,B)(1n)) ∩ Supp((A,B)(1n)) ⊆ T ,5 we define Y A
Ideal

t as follows

[Y B
Ideal

t is defined analogously]:

• If t ∈ E:

1. If t is a leaf, Y A
Ideal

t = Vt.

2. Otherwise, Y A
Ideal

t = Pr[AIdeal(t) = 1] · Y AIdeal

t◦1 + Pr[AIdeal(t) = 0] · Y AIdeal

t◦0 .
• If t ∈ UnBal:

1. If t ∈ UnBalA, Y A
Ideal

t = 1
4q .

2. Otherwise (t ∈ UnBalB), Y A
Ideal

t = 4q.

• Otherwise (t ∈ Small), Y A
Ideal

t = 1
4q .

We emphasize that the adversaries AIdeal and BIdeal remain exactly as before, and the random variables

Y A
Ideal

t and Y B
Ideal

t only enable us to present a refined analysis of their success probabilities. The following
fact easily follows from similar arguments to those used in the proof of Theorem 4.1.

Claim 5.5. For any t ∈ T ′, it holds that

Y A
Ideal

t · Y B
Ideal

t ≥ Vt.

Proof. The proof is by induction up the protocol tree. For a node t /∈ E , the lemma is trivially true since

Y A
Ideal

t · Y BIdeal

t ≥ Vt. For any other node t (without loss of generality t is an A node), the proof follows from
exactly the same argument as in Theorem 4.1. This is true since for the base cases nothing has changed,
and for an internal node t it holds that

• Y AIdeal

t = Pr[AIdeal(t) = 1] · Y AIdeal

t◦1 + Pr[AIdeal(t) = 0] · Y AIdeal

t◦0 , and

• Y BIdeal

t = Pr[A(t) = 1] · Y BIdeal

t◦1 + Pr[A(t) = 0] · Y BIdeal

t◦0 .

Hence, the proof of the induction step follows exactly as in the proof of Theorem 4.1, which uses no property
of the children of t other than that they satisfy the induction hypothesis.

To complete the proof of Theorem 5.1, we need to prove that the success probability of both AE Ideal and
BE Ideal is not far from the above mental experiment. We prove the following lemma.

Lemma 5.6. It holds that V AE
Ideal

λ ≥ Y AIdeal

λ − 1/2q and V BE
Ideal

λ ≥ Y BIdeal

λ − 1/2q.

Proof. The main tool we are using for proving Theorem 5.6 is the following “compensation lemma”.

5We assume without loss of generality that an honest party aborts if the other party does. Hence, T ′ is indeed contained
in T .

13

Lemma 5.7 (Compensation Lemma). Let the relative weights of t ∈ T be as above (i.e., WrelA
Ideal

(t) =
wA

Ideal
(t)

w(t) and WrelB
Ideal

(t) = wB
Ideal

(t)
w(t)). The following holds for every t ∈ T :

WrelA
Ideal

(t) ·WrelB
Ideal

(t) =
Vt
Vλ
.

Namely, the lemma states that a node t whose weight with respect to AIdeal is k times larger than its typical

weight (i.e., wA
Ideal

(t) > k ·w(t)), has weight with respect to BIdeal that is (close to) k times smaller than its
typical weight. The proof of Theorem 5.7 is given later below. We first use it for completing the proof of
Theorem 5.6.

In the following we focus on analyzing the value of V AE
Ideal

λ (the part of V BE
Ideal

λ is proved analogously).
Let F be the set of leaves in T ′. That is, F contains nodes of two types: (i) a leaf t of the original tree T
(such that, there is no ancestor t′ of t in Small∪UnBal), and (ii) a node t ∈ Small∪UnBal (such that, there
is no ancestor t′ 6= t of t in Small∪UnBal). Furthermore, any execution (AIdeal,B) passes through a node in
F . It follows that

Y A
Ideal

λ =
∑
t∈F

wA
Ideal

(t) · Y A
Ideal

t(5.8)

V AE
Ideal

λ =
∑
t∈F

wA
Ideal

(t) · V AE
Ideal

t(5.9)

Let

• F1 = F ∩ UnBalB,
• F2 = F ∩ (UnBalA ∪ Small), and
• F3 = F \ (F1 ∪ F2) = F ∩ E .

Theorem 5.7 yields that UnBalA and UnBalB are disjoint. It follows that F1,F2, and F3 form a partition of
F , and Equation (5.8) yields that

Y A
Ideal

λ =
∑
t∈F1

wA
Ideal

(t) · Y A
Ideal

t +
∑
t∈F2

wA
Ideal

(t) · Y A
Ideal

t +
∑
t∈F3

wA
Ideal

(t) · Y A
Ideal

t

≤
∑
t∈F1

wA
Ideal

(t) · 4q +
∑
t∈F2

wA
Ideal

(t) · 1

4q
+

∑
t∈F3

wA
Ideal

(t) · V AE
Ideal

t

≤ 4q ·
∑
t∈F1

wA
Ideal

(t) +
1

4q
·
∑
t∈F2

wA
Ideal

(t) + V AE
Ideal

λ

≤ 4q ·
∑
t∈F1

wA
Ideal

(t) +
1

4q
+ V AE

Ideal

λ ,(5.10)

where the first inequality follows from Theorem 5.4, which yields that Y A
Ideal

t = 4q for any t ∈ F1, that

Y A
Ideal

t = 1/4q for any t ∈ F2 and that Y A
Ideal

t = V AE
Ideal

t for any t ∈ F3. The second inequality follows from
Equation (5.9).

We next consider the probability of visiting F1 in a random an execution of (AIdeal,B). The definition

of UnBalB yields that WrelB
Ideal

(t) > 16 · q3 for any t ∈ F1. Applying Theorem 5.7 yields that

wA
Ideal

(t)

w(t)
= WrelA

Ideal

(t) <
1

16 · q2
· Vt
Vλ
,(5.11)

for any t ∈ F1. Since Vt ≤ 1 and 1
Vλ
≤ q, we have that wA

Ideal

(t) < w(t)
16·q2 . Plugging this into Equation (5.10)

14

yields that

Y A
Ideal

λ < 4q ·
∑
t∈F1

w(t)

16 · q2
+

1

4q
+ V AE

Ideal

λ

=
4q

16 · q2
·
∑
t∈F1

w(t) +
1

4q
+ V AE

Ideal

λ

≤ 1

4 · q
+

1

4 · q
+ V AE

Ideal

λ

=
1

2 · q
+ V AE

Ideal

λ

Hence, V AE
Ideal

λ ≥ Y AIdeal

λ − 1/2q, as desired.

5.1.1. Putting it All Together.. We next summarize the arguments that conclude the proof of
Theorem 5.1.

Proof. [Proof of Theorem 5.1] Let E be defined as in the foregoing discussion. Claim 5.3 asserts that
E satisfies the first requirement of Theorem 5.1. For the second requirement, Theorem 5.6 yields that

V AE
Ideal

λ ≥ Y AIdeal

λ − 1
2q and V BE

Ideal

λ ≥ Y BIdeal

λ − 1
2q . Hence, we have

V AE
Ideal

λ · V BE
Ideal

λ ≥ (Y A
Ideal

λ − 1

2q
) · (Y B

Ideal

λ − 1

2q
)

= Y A
Ideal

λ · Y B
Ideal

λ − Y A
Ideal

λ + Y B
Ideal

λ

2q
+

(
1

2q

)2

≥ Y A
Ideal

λ · Y B
Ideal

λ − 2

2q
.

Claim 5.5 asserts that Y A
Ideal

λ · Y BIdeal

λ ≥ Vλ, and hence, the second requirement is also satisfied, i.e.,

V AE
Ideal

λ · V BE
Ideal

λ ≥ Vλ −
1

q
.

5.1.2. The Proof of the Compensation Lemma.. Proof. [Proof of Theorem 5.7] For t ∈ T and
c ∈ {0, 1}, let βt(c) be the probability that the next message is c given that the transcript so far was t. I.e.,

βt(c) = Pr
(rA,rB)←Uni(t)

[Trans(rA, rB)|t|+1 = t ◦ c](5.12)

Recall that w(t) is the probability that t is a prefix of the full communication transcript in an honest
execution of the protocol. Assume that t = c1c2 . . . c`, then w(t) = βt0(c1) · βt1(c2) · . . . · βt`−1

(c`).

Consider now an execution of (AIdeal,B). For c ∈ {0, 1}, let βA
Ideal

t (c) be the probability that the next
message is c given that the transcript so far was t. I.e.,

βA
Ideal

t (c) = Pr[AIdeal(t) = c].(5.13)

Recall that wA
Ideal

(t) is the probability that the node t is reached in an execution of (AIdeal,B). It follows
that

wA
Ideal

(t) = βA
Ideal

t0 (c1) · βA
Ideal

t1 (c2) · · ·βA
Ideal

t`−1
(c`),

15

Note that, if t is an A node, then βA
Ideal

t (c) = βt(c)·Vt◦c
Vt

, and otherwise βA
Ideal

t (c) = βt(c). It follows that

WrelA
Ideal

(t) =
wA

Ideal

(t)

w(t)

=
1

w(t)
· βA

Ideal

t0 (c1)βA
Ideal

t1 (c2) · . . . · βA
Ideal

t`−2
(c`−1) · βA

Ideal

t`−1
(c`)

=
1

w(t)
· βt0(c1) · Vt1

Vt0
βt1(c2) · . . . ·

βt`−2
(c`−1) · Vt`−1

Vt`−2

βt`−1
(c`)

=
βt0(c1)βt1(c2) · . . . · βt`−2

(c`−1)βt`−1
(c`)

w(t)
· Vt1
Vt0
· 1 · . . . ·

Vt`−1

Vt`−2

· 1

Since w(t) = βt0(c1)βt1(c2) · . . . · βt`−2
(c`−1)βt`−1

(c`), we obtain that

WrelA
Ideal

(t) =

`/2∏
i=1

Vt2i−1

Vt2i−2

.

A similar argument shows that

WrelB
Ideal

(t) =

`/2∏
i=1

Vt2i
Vt2i−1

.

Hence, we conclude that

WrelA
Ideal

(t) ·WrelB
Ideal

(t) =

`/2∏
i=1

Vt2i−1

Vt2i−2

·
`/2∏
i=1

Vt2i
Vt2i−1

=
∏̀
i=1

Vti
Vti−1

=
Vt
Vλ

6. Discussion and Open Questions. The main open question is understanding the limits of efficient
attacks in breaking coin-flipping protocols. Specifically (assuming one-way functions do not exist), does
there exist, for any (correct) coin-flipping protocol, an efficient adversary that biases its output towards 0

or towards 1 by 1
2 − 1/ poly? or even by

√
2−1
2 + Ω(1)? In light of the reduction of Chailloux and Kerenidis

[4] from (
√
2−1
2 +

√
2 · ε+ o(ε))-bias strong coin-flipping to ε-bias weak coin-flipping, a positive answer even

to the weaker form of the above question, would mean that constant-bias weak coin-flipping protocols imply
the existence of one-way functions. More specifically, if an adversary can always bias the output of a coin-

flipping protocol by
√
2−1
2 + c for some c ∈ Ω(1) (assuming one-way functions do not exist), then for any

ε such that
√

2 · ε + o(ε) < c, the existence of ε-bias weak coin-flipping protocols implies the existence of
one-way functions.

While our analysis only proves the existence of an adversary achieving
√
2−1
2 − o(1) bias (and thus has

no direct implication to weak coin flipping), it shows that (assuming one-way functions do not exist) for any
coin-flipping protocol there exists an efficient adversary that can bias its output both towards 0 and towards

1, by
√
2−1
2 − o(1). Hence, our attack accomplishes a harder task than the required one. Interestingly,

√
2−1
2

is the right bound for this more challenging task. That is, there exists a (correct) coin-flipping protocol for

which no adversary (not even an unbounded one) can bias the output towards 1 by more than
√
2−1
2 .6

Acknowledgment. We thank Hemanta Maji for useful discussions.

6For instance, consider the protocol where A (playing first) sets the outcome of the protocol to 0 w.p. 1− 1√
2

and defers the

decision to B otherwise. The party B, if plays, sets the outcome to 1 w.p. 1√
2

and to 0 otherwise. It is clear that the protocol

is correct (i.e., expected outcome for an honest execution is 1
2

) and that there exists no cheating strategy for neither A nor B

that can make the expected outcome of the protocol to be larger than 1√
2

.

16

References.

[1] B. Averbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement Bracha’s O(log n)
Byzantine agreement algorithm, 1985. Unpublished manuscript.

[2] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. In
Advances in Cryptology – CRYPTO 2010, pages 538–557, 2010.

[3] M. Blum. Coin flipping by telephone. In Advances in Cryptology – CRYPTO ’81, pages 11–15, 1981.
[4] A. Chailloux and I. Kerenidis. Optimal quantum strong coin flipping. In Proceedings of the 50th Annual

Symposium on Foundations of Computer Science (FOCS), pages 527–533, 2009.
[5] K.-M. Chung and F.-H. Liu. Parallel repetition theorems for interactive arguments. In Theory of

Cryptography, Fourth Theory of Cryptography Conference, TCC 2010, pages 19–36, 2010.
[6] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings of the

18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.
[7] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete control processes.

Manuscript, 1993.
[8] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-box complexity of optimally-

fair coin tossing. In Theory of Cryptography, Fourth Theory of Cryptography Conference, TCC 2011,
volume 6597, pages 450–467, 2011.

[9] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32, 1989.

[10] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random functions. In
Advances in Cryptology – CRYPTO ’84, pages 276–288, 1984.

[11] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, 1986.

[12] I. Haitner. A parallel repetition theorem for any interactive argument. In Proceedings of the 50th Annual
Symposium on Foundations of Computer Science (FOCS), 2009.

[13] I. Haitner and E. Omri. Coin Flipping with Constant Bias Implies One-Way Functions. In Proceedings
of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 110–119, 2011.

[14] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically hiding commitments and
statistical zero-knowledge arguments from any one-way function. SIAM Journal on Computing, 39(3):
1153–1218, 2009.

[15] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999. Preliminary versions in STOC’89 and
STOC’90.

[16] J. H̊astad, R. Pass, K. Pietrzak, and D. Wikström. An efficient parallel repetition theorem. In Theory
of Cryptography, Fourth Theory of Cryptography Conference, TCC 2010, 2010.

[17] R. Impagliazzo. Pseudo-random generators for cryptography and for randomized algorithms. PhD thesis,
Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1992.

[18] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages 230–
235, 1989.

[19] A. Y. Kitaev. Quantum coin-flipping. Presentation at the 6th workshop on quantum information
processing (qip 2003), 2003.

[20] H. K. Maji, M. Prabhakaran, and A. Sahai. On the Computational Complexity of Coin Flipping.
In Proceedings of the 51st Annual Symposium on Foundations of Computer Science (FOCS), pages
613–622, 2010.

[21] C. Mochon. Quantum weak coin flipping with arbitrarily small bias. arXiv:0711.4114, 2007.
[22] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Theory of Cryptography, Fourth

Theory of Cryptography Conference, TCC 2009, pages 1–18, 2009.
[23] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991. Pre-

liminary version in CRYPTO’89.
[24] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In

Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 33–43. ACM
Press, 1989.

17

[25] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387–394, 1990.

[26] S. Zachos. Probabilistic quantifiers, adversaries, and complexity classes: An overview. In Proceedings
of the First Annual IEEE Conference on Computational Complexity, pages 383–400, 1986.

18

