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Abstract

Interactive hashing, introduced by Naor, Ostrovsky, Venkatesan, and Yung [Jour-
nal of Cryptology ’98], plays an important role in many cryptographic protocols. In
particular, interactive hashing is a major component in all known constructions of
statistically hiding commitment schemes and of statistical zero-knowledge arguments
based on general one-way permutations/functions. Interactive hashing with respect
to a one-way function f , is a two-party protocol that enables a sender that knows
y = f(x), to transfer a random hash z = h(y) to a receiver such that the sender is
committed to y: the sender cannot come up with x and x′ such that f(x) ̸= f(x′), but
h(f(x)) = h(f(x′)) = z. Specifically, if f is a permutation and h is a two-to-one hash
function, then the receiver does not learn which of the two preimages {y, y′} = h−1(z)
is the one the sender can invert with respect to f .

This paper reexamines the notion of interactive hashing, and proves the security of
a variant of the Naor et al. protocol, which yields a more versatile interactive hashing
theorem. When applying our new proof to (an equivalent variant of) the Naor et al.
protocol, we get an alternative proof for this protocol that seems simpler and more
intuitive than the original one, and achieves better parameters (in terms of how security
preserving the reduction is).
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1 Introduction

In an interactive hashing protocol introduced by Naor et al. [16], the sender S transfers
to the receiver R the “hash value” h(y) of y, where the “hash function” h is chosen (at
random) by the receiver from a predetermined function family. The protocol is required to
be binding in the sense that S is bounded by the protocol to at most one value of y. This
binding requirement can hold is several ways: clearly, binding holds if after the interaction
ends there is only a single element y that is consistent with the hash value. Protocols with
this strong binding property are known as “information theoretic” interactive hashing. In
contrast, in the computational setting we are interested in the case where a random h does
induce many collisions. Thus, we only require the binding property to hold against efficient
senders. Assuming that h is taken (at random) from a family of collision resistant hash
functions,1 the binding property is immediate. In this paper we do not rely on such families,
as we do not want to assume their existence. Following [16], we enforce the binding by asking
the sender to provide additional information about y (typically, the honest sender gets this
additional information as part of its input).

We formally define the computational binding property in Section 3, but in the meanwhile
let us consider the following important example: let f be a one-way permutation and view
the committed value y as an image of f . For the purpose of binding, we can now require the
sender to provide x such that y = f(x) is consistent with the transcript (i.e., h(y) = z, where
R’s output equals (h, z)). Thus, for breaking the binding of the protocol a cheating sender
needs not only output y1 ̸= y2 such that h(y1) = h(y2) = z, but it is also required to output
x1 and x2 with f(x1) = y1 and f(x2) = y2. Indeed, using this additional requirement [16]
constructs an interactive hashing protocol that allows collisions, but is nevertheless binding
(see Section 1.1 for more details).

Connection to statistically hiding commitments. Interactive hashing (in the flavor
mentioned above) is closely related and to a large extent motivated by the fundamental notion
of statistically hiding (and computationally binding) commitments. Statistically hiding com-
mitment schemes are used as building blocks in constructions of statistical zero-knowledge
arguments [1, 16] and of certain coin-tossing protocols [14]. Naor et al. [16] use their interac-
tive hashing protocol, hereafter the NOVY protocol, in order to construct statistically hiding
commitments based on any one-way permutation. Haitner et al. [8] generalized their result by
showing that the NOVY protocol can be used to construct statistically hiding commitments
based on regular one-way functions (and also on the so called approximable-preimage-size
one-way functions). Finally, Haitner et al. [9] constructed statistically hiding commitments
based on any one-way function.2 Not surprisingly, interactive hashing is heavily used in the
underlying commitment scheme of [9].

1H is a family of collision resistant hash functions if given a random h ∈ H, it is infeasible to find x1 ̸= x2

with h(x1) = h(x2).
2[9] is the full version that corresponds to Nguyen et al. [17] and Haitner and Reingold [5]. [17] is

independent of this work and [5] is subsequent to both [17] and this work.
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A possible drawback of [9] is that their construction is rather inefficient and complex.
Indeed, a major motivation for looking into interactive hashing is to simplify [9]. Such a
simplification was recently given by Haitner et al. [10], critically using the results we present
here.

Before discussing our results and their applications, let us have a closer look into the
notion of interactive hashing.

1.1 Interactive Hashing in the Setting of One-Way Permutations

Let f : {0, 1}n 7→ {0, 1}n be a one-way permutation and consider the following two-party pro-
tocol between a sender S, getting as input x ∈ {0, 1}n, and a receiver R. The receiver selects
a random (almost) pairwise independent two-to-one hash function h : {0, 1}n 7→ {0, 1}n−1,3
and sends its description to S. In return, S sends z = h(y) back to R, where y = f(x). Note
that if both parties follow the protocol, then the following binding property is guaranteed: it
is not feasible for S to find x′ ∈ {0, 1}n such that f(x′) ̸= f(x) but h(f(x′)) = h(f(x)) = z,
although (exactly one) such element x′ does exist. This is since the task of finding such x′

can be shown (as firstly done in [15]) to be equivalent in hardness to inverting f on a random
image (whereas the latter task is assumed to be hard by the one-wayness of f).

What happens, however, if S selects x only after seeing h? In such a case, it is quite
plausible that S would be able to “cheat” by producing x, x′ ∈ {0, 1}n such that f(x) ̸=
f(x′) but h(f(x′)) = h(f(x)) = z.4 The NOVY interactive hashing protocol prevents such
cheating. For that, it employs a specific family of hash functions such that each one of its
functions h can be decomposed into (n − 1) Boolean functions h1, . . . , hn−1, where h(x) =
h1(x), . . . , hn−1(x). In the NOVY protocol, instead of sending h at once as described above,
the protocol proceeds in rounds such that R sends a single Boolean function hi in each round,
and in return S sends a bit zi, which is supposed to equal hi(f(x)). Intuitively, a cheating
sender has a significantly smaller leeway for cheating as it can no longer wait in selecting x
till it receives the entire description of h. Still, it is highly non-trivial to argue that restricting
the sender by adding interaction as above, is sufficient in order to prevent the sender from
cheating. Nevertheless, Naor et al. [16] have shown that their protocol is binding even against
a cheating sender (namely, even a cheating sender cannot produce x, x′ ∈ {0, 1}n such that
f(x) ̸= f(x′), but h(f(x′)) = h(f(x)) = z).

1.1.1 Application to Perfectly Hiding Commitments

Naor et al. [16] used their protocol to construct perfectly hiding commitment scheme from
one-way permutations, by employing the protocol with a uniformly chosen x as the sender’s

3I.e., for every x ̸= x′ ∈ {0, 1}n, the distribution (h(x), h(x′)) induced by uniformly selecting h from the
family, is close to being uniform over {0, 1}n−1 × {0, 1}n−1.

4Assume for example that the one-way permutation equals the identity function on the set T of all strings
that start with n/4 zeros (where n is the input length). Now given a hash function h, all that the cheating
sender has to do is to find a collision y1 ̸= y2 ∈ T with h(y1) = h(y2). Such a collision is likely to exist by
the birthday paradox, and for many families of hash functions (e.g., linear mappings) finding such a collision
is easy.
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input. Let y0 < y1 be the two preimages of the hash value determined by the protocol (i.e.,
y0, y1 ∈ h−1(z)) and let i ∈ {0, 1} be such that f(x) = yi. The sender commits to a bit
b ∈ {0, 1} by masking it with i (i.e., by sending c = i ⊕ b to the receiver). In order to
decommit, the sender sends x to the receiver, who sets b = c ⊕ i, where i is as above (e.g.,
the index of f(x) in {y0, y1}). The above scheme is perfectly hiding since the hash functions
used are two-to-one, where the binding property of the scheme easily follows by the binding
of the NOVY protocol.

1.2 Interactive Hashing in the “Sparse Case”

How about constructing statistically hiding commitments from, say, regular one-way func-
tions (i.e., every possible output has the same number of preimages)? In such a case, we
would like to interactively hash a value y that is taken from Im(f), the image of f over
{0, 1}n, and not from {0, 1}n as in the case of one-way permutations.

Notice that the NOVY theorem guarantees that when hashing y with h : {0, 1}n 7→
{0, 1}n−1, the sender is committed to a single value y (even though h−1(h(y))∩ Im(f) might
not be a singleton). In the case the Im(f) is sparse (i.e., |Im(f)| /2n = neg(n)), however,
when h outputs so many bits then it is most likely that h(y) completely determines y. Hence,
we cannot hope to use such protocol to get a statistically hiding commitment scheme.

Facing the aforementioned difficulty, Haitner et al. [8] made the following observation:
the binding of the NOVY protocol holds for every function f that it is hard to invert
over the uniform distribution on Im(f). Furthermore, some weak hiding is guaranteed for
every f such that Im(f) is “dense” in {0, 1}n (i.e., of order 2n/ poly(n)). Equipped with
this observation, [8] employ the NOVY protocol with length-preserving poly-to-one one-way
function (i.e., each output has at most polynomial number of preimages in the image set of
f) to get some weak form of statistically hiding commitments. which can later be amplified
into a full-fledge statistically hiding commitments. To handle any regular one-way function,
[8] applies additional layer of (non interactive) hashing to reduce to the dense case. This
implies a construction of statistically hiding commitments from any regular one-way function
with known image size. Interactive hashing in the sparse case arises in other works as well,
most notably in the construction of statistical zero-knowledge arguments from any one-way
function [17, 10].

1.3 Our Results

We consider a variant of the NOVY protocol in which the special family of two-to-one
hash functions used by [16] is replaced by any “product” of Boolean families of pairwise
independent hash functions (i.e., h(x) = (h1(x), . . . hk(x)), where h1 . . . hk are taken from
such families). Our proof relies in part on the original proof due to [16], but still seems
significantly simpler. The new theorem directly applies to the following “sparse case”: let
f : {0, 1}n 7→ {0, 1}n be an efficiently computable function and let L ⊆ {0, 1}n be sparse.
Our theorem applies when hashing to roughly s = ⌊log(|L|)⌋ bits. In particular, when
h is taken from a family of hash functions Hs : {0, 1}n 7→ {0, 1}s that is a product of s
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families of pairwise independent Boolean hash functions, the above protocol possesses the
following binding property: if f is hard to invert on the uniform distribution over L, then
no efficient sender S∗ can find two elements x, x′ ∈ f−1(L) such that f(x) ̸= f(x′) but
h(f(x)) = h(f(x′)) = z (where z is the value determined by the protocol as h(y)). As an
easy corollary, we use the new theorem to derive a direct construction of statistically hiding
commitment based on regular one-way functions of known regularity (and thus reprove [8]).

Our new proof can be easily used to derive a new proof for a close variant of the NOVY
protocol introduced by [9], which like the original NOVY protocol uses two-to-one hash
functions.

We also note that a product family of pairwise independent hash functions is not regular
(i.e., a function is regular, over a given domain, if all its images have the same number of
preimages). As a result, protocols using such families seem only to be useful for obtaining
statistically hiding commitments.

The parameters achieved by our proof are an improvement compared with the origi-
nal ones: given an algorithm A that breaks the binding property with probability εA(n),
we get an algorithm that inverts the one-way permutation in comparable time and with
inverting probability ε2A(n)/ poly(n) (where n is the hash function input length). This is
an improvement over the ε10A (n)/ poly(n) and the Ω(εA(n)

3/ poly(n)) reductions of [16] and
[17] respectively, and is close to natural limitations of the proof technique (see discussion in
Section 5).

Finally, we consider interactive hashing protocols that use hash functions of arbitrary
output length, and not necessarily Boolean. Given a one-way function that is hard to
invert over the uniform distribution by algorithms of running-time 2ℓ, our approach yields
an interactive hashing protocol of n/ℓ rounds. When applied to one-way permutations, the
resulting protocol matches the recent black-box lower bounds of Wee [21] and Haitner et al.
[7], and generalizes the one-way permutations based O(n/ log n)-round protocol of [13].

1.4 Related Work

Independently of our work, Nguyen et al. [17] gave a new proof for the NOVY protocol.
Their proof follows the proof of [16] more closely than ours, but still introduces various
simplifications and parameter improvements. The main goal of their new proof was to
generalize the protocol such that it allows hashing with a hash function that is poly-to-one
(rather than two-to-one as in [16]). The result of [17] (and of [16]), however, do not extend
to the sparse case settings we considered above, where this limitation seems inherent to their
proof technique.

More recently, Haitner et al. [9] consider a variant of the NOVY protocol that uses a
different type of two-to-one hash functions. Specifically, the functions induced by the families
of full-rank matrices mapping {0, 1}n to {0, 1}n−1, where the operation h(x) is interpreted
as h × x. While such families provide the same hiding guarantee for the resulting protocol
as the special two-to-one functions considered by [16, 17], the advantage is that the binding
property of the protocol can be easily reduced to that of a protocol using families of pairwise
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independent hash functions. In particular, [9] show how to derive the security of this variant
from our main result.

In this work we focus on security with respect to bounded senders and unbounded re-
ceivers. The setting where both the receiver and the sender are unbounded, called informa-
tion theoretic interactive hashing (also known as, interactive hashing for static sets), and its
applications (cf., [4, 19, 18, 20]) are not treated by this work. See [9, Section 3.2] for more
details on information theoretic interactive hashing and its connection to the computational
setting.

1.5 Proof Idea

We outline our binding proof in the most basic setting where f : {0, 1}n 7→ {0, 1}n is a one-
way permutation and L = {0, 1}n. Let x ∈ {0, 1}n be S’s input and let y = f(x). Our
protocol consists of (n − 1) rounds, in each round R selects a random Boolean pairwise-
independent hash function hi and S replies with zi = hi(y).

Assume there exists an algorithm S∗ that plays the sender’s role in the protocol and cheats
with non-negligible probability. Namely, with such probability S∗ outputs at the end of the
protocol two elements x0, x1 ∈ {0, 1}n such that y0 = f(x0) is different from y1 = f(x1),
and both y0 and y1 are consistent with the transcript. Consider the following naive way one
may try to invert f using S∗: given an input y, choose the hash functions h1, . . . , hn−1 to
be used by R at random, and return one of the two elements that S∗ outputs in the end
of the interaction with R. In the case that y is consistent with S∗’s answer, then we are in
good shape: there should be only few elements that are consistent with S∗’s answers, and
therefore with good probability either y0 or y1 output by S∗’s is equal to y. Unfortunately,
the probability of y to be consistent with S∗’s answers is very small; at each round, the
probability that y is consistent with S∗ is typically bounded by 1

2
.

The above motivates the following reduction: in the i’th round feed S∗ keep sampling
a random hash function hi, until its answer is consistent with y. If S∗ behaves randomly,
or acts according to the honest strategy with respect to some fixed input y′, then no more
than few such attempts are required for each round. For arbitrary adversaries, however, the
above analysis seems to fail; as the process of choosing the hi’s proceeds, the distribution of
y (chosen at random from the image of f) gets further away from being uniform among the
elements that are consistent with S∗’s answers.

The actual reduction (following [16]) interpolates the two: we use the second reduction
for the first t rounds, and the first reduction for the last n− t rounds, where t = n−O(log n)
is carefully chosen to circumvent both the above obstacles.5 The novelty in our new proof,
highlighted below, is in the way we analyze the success probability of this combined reduction.

Analyzing the reduction success probability. Given a vector of Boolean hash func-
tions h = (h1, . . . , ht), let Consist(h) := {y′ ∈ {0, 1}n : ∀i ∈ [t] hi(y

′) = S∗(h1, . . . , hi)}. (I.e.,
5Actually, the fact that the combined reduction works, yields that the second reduction also works (see

Remark 4.6). Still, following [16], we use this distinction to simplify the presentation.
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Consist(h) is the subset of elements inside {0, 1}n that are consistent with S∗’s responses on
h.) Let DReal be the distribution induced by the first part of the above reduction on the
tuple (h, y). That is, y is uniformly chosen in {0, 1}n, and then h is chosen using rewinding
so that y ∈ Consist(h). Given this formulation, the reduction success probability is simply
the success probability of the following algorithm (hereafter, the Inverter) over DReal: given

a tuple (h, y), choose h
′
= (ht+1, . . . , hn−1) at random, and return f−1(y) if it is one of the

two outputs of S∗ on (h, h
′
).

To analyze the above success probability we introduce the distribution DIdeal: first h =
(h1, . . . , ht) is chosen at random, and only then a random element y is uniformly drawn from
Consist(h). Since the distribution of h under DIdeal is as induced by a random interaction of
S∗ with R (i.e., uniform at random), it is easy to see that Inverter does well on DIdeal (roughly
ε/|Consist(h)|, for a uniformly chosen h). We would then have concluded the proof if we
could have proved that the statistical difference between DIdeal and DReal is small enough.
It turns out, however, that such a strong bound is unlikely to hold as it would imply that
one-way functions do not exist!6

We do mange to prove, however, that DIdeal is almost “dominated” by DReal: the mass
that DIdeal assigns to most tuples is not too much larger (multiplicatively) than their mass
under DReal. This observation turns out to be sufficient, since when taking into account the
full power of S∗ (i.e., that it finds two consistent outputs) we prove that Inverter does “well”
on most tuples in the support of DIdeal. Combining the above observations, it follows that
Inverter does well also on DReal.

1.6 Paper Organization

General notations and definitions used throughout the paper are given in Section 2. In
Section 3, we formally define interactive hashing, present the NOVY paradigm for such
protocols, and state our main theorem regarding the binding of such protocols. The proof of
this theorem is given in Section 4, where discussion and further issues appear in Section 5.
Finally, in Appendix A we show how to use our new theorem to derive a direct construction
of statistically hiding commitment scheme based on regular one-way functions.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for
values. For n ∈ N, let [n] = {1, · · · , n}. Given a binary relation W ⊆ D1 ×D2 and y ∈ D2,
let Wy = {x ∈ D1 : (x, y) ∈ W}. Let pptm denote a probabilistic algorithm (i.e., Turing

6Up to this point we did not use the fact that S∗ finds two different outputs of f that are consistent with
the protocol rather than a single output (and for that purpose, S∗ is not more useful than the honest sender).
If the statistical difference between DIdeal and DReal would have been small enough, we could deduce that
the above (efficient) procedure when applied to the honest sender, inverts f with noticeable probability.
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machines) that runs in strict polynomial time and let poly denote the family of polynomials
(we sometimes abuse notation and view poly as an arbitrary polynomial). Throughout we
identify functions with their description, and assume without loss of generality that such a
description is a binary string.

Given a random variableX, let x← X denote that x is selected according toX. Similarly
given a finite set S, let s← S denote that s is selected according to the uniform distribution
on S. We adopt the convention that when the same random variable occurs several times in
an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is defined
to be the probability that when x← X, we have f(x) = x. Given a distribution D over a set
S, the support of D is defined as Supp(D) := {s ∈ S : D(s) > 0} and its min entropy, denoted
H∞(D), is defined as minx∈X log 1

D(x)
. Finally, the statistical distance of two distributions P

and Q over a final set U , denoted SD(P,Q), is defined as 1
2

∑
u∈U |P(u)− Q(u)|.

An interactive protocol (A,B) consists of two interactive algorithms (touring machines)
that compute the next-message functions of the (honest) parties in the protocol. Let
(A(a),B(b))(x) denote the random process obtained by having A and B interact on com-
mon input x, with (private) auxiliary inputs a and b to A and B, respectively, and with
independent random coin tosses for A and B. The protocol (A,B) runs in polynomial-time, if
there is a polynomial p such that A halts in (A(·), ·)(x), and similarly B halts in (·,B(·))(x),
after at most p(|x|) rounds for all possible input x ∈ {0, 1}∗ (regardless of its private input
and the other party strategy). Let viewA(A(a),B(b))(x) denotes A’s view of the interaction,
i.e., its values are transcripts (γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged
and r is A’s coin tosses. Similarly, viewB(A(a),B(b)) denotes B’s view.

2.2 Efficient Function Families

To be useful in applications, ensembles of function families are typically required to be
“efficient”. For our needs, efficiency means the following.

Definition 2.1 (efficient ensembles of function families). Let H = {Hn}n∈N be an ensemble
of function families mapping strings of length n to strings of length ℓ(n). The ensemble H
is efficient, if the following hold:

Samplable. There exists a pptm that given 1n, returns a uniform element in Hn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and a description
of h ∈ Hn, outputs h(x).

Verifiable. There exists a polynomial-time algorithm that given h ∈ {0, 1}∗ and 1n, outputs
‘1’ iff h ∈ Hn.

Throughout we use the shorthand “efficient function families” for “efficient ensembles of
function families”.
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2.3 Pairwise Independent Function Families

Definition 2.2 (pairwise independent families). Let H be a function family mapping strings
of length n to strings of length ℓ. The family H is a pairwise independent, if

Prh←H[h(x1) = y1 ∧ h(x2) = y2] = 2−2ℓ

for every distinct x1, x2 ∈ {0, 1}n and every y1, y2 ∈ {0, 1}ℓ.

It is well known (Carter and Wegman [2]) that for every polynomial-time computable
ℓ(n) ≤ poly(n), there exists an efficient family of pairwise-independent hash functions with
description size O(max{n, ℓ(n)}).

The following standard lemma states that a random pairwise independent hash function
partitions a given set into (almost) equal size subsets.

Lemma 2.3. Let H be a pairwise independent function family mapping strings of length n
to strings of length ℓ, let L ⊆ {0, 1}n, let µ = |L| /2ℓ and let δ > 0. Then

Prh←H
[
∃y ∈ {0, 1}ℓ : ||{x ∈ L : h(x) = y}| − µ| > δµ

]
<

2ℓ

δ2µ
.

Proof. Fix y ∈ {0, 1}ℓ and let H be uniformly chosen in H. For x ∈ L, define the indicatory
random variable Ix to be one iff H(x) = y, and let X =

∑
x∈L Ix. Since E[Ix] = 2−ℓ for every

x ∈ L, it follows that E[X] = µ.
Note that Var[Ix] = E[I2x] − E[Ix]

2 = E[Ix](1 − E[Ix]) ≤ E[Ix] for every x ∈ L, where
the pairwise independence of the Ix’s

7 yields that Var[X] = Var[
∑

x∈L Ix] =
∑

x∈LVar[Ix] ≤∑
x∈L E[Ix] = E[X]. Applying the Chebyshev inequality

Pr [|X − E[X]| > δ · E[X]] <
1

(δ · E[X])2
· Var[X] ≤ E[X]

(δ · E[X])2
=

1

δ2µ
,

and a union bound completes the proof. �

2.4 Linear Transformations

Other function families of interest are that of linear transformation.

Definition 2.4 (linear transformations). Given n, ℓ ∈ N, M ∈ {0, 1}ℓ×n and x ∈ {0, 1}n,
let M(x) := M × x mod 2, and let Linℓ,n be the function family defined by all matrices in
{0, 1}ℓ×n with respect to the above operation. We let Fullℓ,n ⊆ Linℓ,n be the function family
defined by all full-rank matrices in {0, 1}ℓ×n.

Note that both Linℓ,n and Fullℓ,n, are efficient families for any polynomial-time com-
putable ℓ = ℓ(n) < poly(n). We use the following fact.

7A set of random variables {Si} over U is pairwise independent, if Pr[Si = ui ∧ Sj = uj ] = Pr[Si =
ui] · Pr[Sj = uj ] for any i ̸= j and ui, uj ∈ U .
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Fact 2.5. There exists a constant c > 0 such that
|Fullℓ,n|
|Linℓ,n| > c for any integers ℓ ≤ n.

Proof. The probability that a random vector in {0, 1}n is in the span of some k < n vectors
in {0, 1}n (over F2), is bounded by 2k−n. It follows that

PrM←Linℓ,n [M ∈ Fullℓ,n] ≥ Πℓ
k=1(1− 2k−n−1)

> c := lim
t→∞

Πt
k=1(1− 2−k)

> 1− lim
t→∞

t∑
k=1

2−k = 0.

�

2.5 Piece-Wise Functions

In the interactive hashing protocols considered below, the receiver sends the function de-
scription in pieces, where each such piece suffices for evaluating the output it contributes.

Definition 2.6. Given a sequence of functions h = (h1, . . . , hs) defined over {0, 1}n, let
h(x) = h1(x) ◦ · · · ◦ hs(x), where ◦ denotes string concatenation. A family of length s
function sequences, is called s-piece function family.

An ensemble H = {Hn} of s = s(n)-piece function families is called prefix verifiable, if
there exists a polynomial-time algorithm that given (1n, h1, . . . , hi) returns ‘1’ iff there exists
hi+1, . . . , hs such that (h1, . . . , hs) ∈ Hn.

In this paper we consider two kinds of prefix verifiable piece-wise families. The first type
is a product family ensemble Hs, where H is an efficient function family and s is polynomial-
time computable integer-valued function. It is easy to verify that Hs is indeed an efficient
prefix verifiable s-piece family.

The second type is a variant of linear maps; given a subset H of Linℓ,n and an index
set i = (i1, . . . , is) with 1 ≤ i1 < · · · < is = ℓ, let Hi be the s-piece function fam-

ily {
(

h1
...

hi1

)
, . . . ,

(
his−1+1

...
his

)
: h =

(
h1
...
hℓ

)
∈ H}, letting

(
hij−1+1

...
hij

)
(x) =

(
hij−1+1

...
hij

)
× x. For

polynomial-time computable index-set function i = i(n) = (i1(n), . . . , is(n)(n)) and integer-
valued function ℓ = ℓ(n) < poly(n), it is easy to verify that the s-piece function family
ensemble (Linℓ(n),n)i(n) and (Fullℓ(n),n)i(n) are both efficient and prefix-verifiable.

3 Interactive Hashing

Following [17], we state our result in the language of binary relations, where these relations
are not assumed to have efficient deciders. Since every function f defines the binary relation
{(x, f(x)) : x ∈ {0, 1}∗}, our result yields an analogous result for functions.

10



Definition 3.1 (interactive hashing protocols [16, 17]). Let H be an ensemble of function
families mapping strings of length n to strings of length ℓ = ℓ(n). An H-interactive hashing
protocol is a polynomial-time protocol (S,R) such that the following holds: the parties receive
the security parameter 1n as a common input, and S gets y ∈ {0, 1}n as a private input. At
the end, R outputs (h, z) ∈ H × {0, 1}ℓ.

We make the following correctness requirement: for all n ∈ N, y ∈ {0, 1}n and a pair
(h, z) that may be output by (S(1n, y),R(1n)), it is the case that h(y) = z.

An interactive hashing protocol is said to be (T, δ)-binding if the following holds.

Definition 3.2. Let T : N 7→ N and δ : N × R × [0, 1] 7→ [0, 1]. An H-interactive hashing
protocol (S,R) is said to be (T, δ)-binding, if there exists an oracle-aided algorithm pptm A
such that the following hold for any n ∈ N and any adversary S∗. First, the running time
of AS∗(y) is bounded by T (|y|) (counting oracle calls as a single operation). Second, let
(h, z) and ((x0, y0), (x1, y1)) denote the common output and S∗’s private output in (S∗,R)(1n)
respectively, then for any set L ⊆ {0, 1}n and any binary relation W ⊆ {0, 1}∗ × L, if

Pr[h(y0) = h(y1) = z ∧ y0 ̸= y1 ∧ (x0, y0), (x1, y1) ∈ W ] ≥ ε, (1)

then

Pry←L[A
S∗(y) ∈ Wy] ≥ δ(n,

|L|
2ℓ

, ε) (2)

Note that the above definition is black-box (i.e., the security reduction is a uniform algo-
rithm that accesses the adversary as an oracle). By considering such a definition, however, we

only strengthen our positive results. Also note that a (poly(n), poly(ε)/ poly(n, |L|
2ℓ
))-binding

protocol is “polynomially secure” for the set ensemble L = L(n) with |L|
2ℓ
∈ poly(n) — on

security parameter 1n, no pptm breaks the binding with more than negligible probability.
The above correctness and binding definitions are oblivious to the actual implementation

of the protocol. Since Definition 3.1 does not specify the amount of information that might
leak to the (possibly cheating) receiver, stating a similar hiding property is more challenging.
Thus, rather than giving a generic (and hard to digest) hiding definition, we separately
analyze the hiding guarantee achieved by each of the different constructions considered below.

3.1 The NOVY Paradigm

All the interactive hashing protocols considered in this paper follows the NOVY paradigm,
which is a natural generalizations of the NOVY protocol. The NOVY paradigm instantiated
with an s-piece family H over strings of length n, denoted NOVY⟨H⟩, is defined as follows:

Protocol 3.3 (NOVY⟨H⟩).

Common input: 1n.

S’s input: y ∈ {0, 1}n.

11



1. R chooses uniformly at random h = (h1, . . . , hs) ∈ H.

2. Do for i = 1 to s:

(a) R sends hi to S.

(b) S aborts if (h1, . . . , hi) is not a prefix of some element in H.
Otherwise, S sends zi = hi(y) back to R.

3. R outputs (h, z = (z1, . . . , zs)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Typically, we instantiated the NOVY paradigm with efficient, prefix-verifiable, s-piece
families. It is straightforward that for such families, the resulting protocol is anH-interactive-
hashing.

3.1.1 Hiding of the NOVY Paradigm

The above definition stipulates that the only information a cheating receiver gets from an
execution is (h, h(y)) for some h ∈ H. While this h might be chosen adaptively by the
cheating receiver, we still have the following guarantee.

Claim 3.4. Let H be an s-piece function family mapping strings of length n to strings of
length ℓ and let (S,R) = NOVY⟨H⟩. Let L ⊆ {0, 1}n and let q = ⌊log |L|⌋− ℓ. Then for any
cheating adversary R∗ and δ ∈ (0, 1], it holds that

Prv←VR∗ [H∞(Y | VR∗ = v) < q + log δ] < δ,

where Y is uniformly distributed over L and VR∗ is R∗’s view in (S(Y ),R∗).

Proof. Since S refuses to send more than ℓ bits of information about its input, the proof
follows using a straightforward counting argument. �

When limiting our attention to product of pairwise-independent function families and
semi-honest receivers (ones that follow the prescribed protocol), we have the following guar-
antee:

Claim 3.5. Let H be an s-piece pairwise-independent function family mapping strings of
length n to strings of length ℓ, and let (S,R) = NOVY⟨H⟩. Let L ⊆ {0, 1}n and let q =
⌊log |L|⌋ − ℓ. Then

Prv←VR
[H∞(Y | VR = v) < q − 1] ≤ 2ℓ

2q−3
,

where Y is uniformly distributed over L and VR is R’s view in (S(Y ),R).

Proof. Immediately follows by Lemma 2.3 (taking δ = 1
2
). �
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Finally, for the family Fullℓ,n and the set L = {0, 1}n, we have the following “perfect”
hiding guarantee (formally stated and proved below): (1) the input y of S is perfectly hidden
among (at least) 2n−ℓ other values in {0, 1}n, and (2) the “index” of y among these values is
efficiently computable from y. In the interesting case of n− ℓ = 1, it follows that the index
of y is a uniform bit from the receiver point of view. Such an hiding guarantee is equivalent
to that achieved by the NOVY protocol, and in particular can be use to construct perfectly
hiding commitment schemes from one-way permutations.

Claim 3.6. There exists a deterministic polynomial-time computable mapping M
such that the following holds: let (Fullℓ,n)i be an s-piece function family, and let
(S,R) = NOVY⟨(Fullℓ,n)i⟩. Then for any cheating adversary R∗, the distributions
(VR∗(y),M(ℓ, T (y), y))y←{0,1}n and (VR∗(y), z)y←{0,1}n,z←{0,1}n−ℓ are identical, where (the
jointly distributed) T (y) and VR∗(y), are the transcript and R∗’s view respectively, in
(S(y),R∗).

Proof. We assume for ease of notation that R∗ never causes the sender to abort. Given a
transcript t = (h, z) ∈ (Fullℓ,n)i×{0, 1}ℓ of (S,R∗) and an input y ∈ {0, 1}n, algorithmM finds

h
′ ∈ Linn−ℓ,n such that the matrix

(
h

h
′

)
is of full rank n,8 and outputs h

′
(y). Conditioned

on R∗’s view, the sender’s input (i.e., y) is uniformly distributed in the (n− ℓ)-dimensional
affine subspace {y′ : h(y) = z}. Hence, M(ℓ, t, y) is uniformly distributed in {0, 1}n−ℓ. �

3.1.2 Binding of the NOVY Paradigm

The following theorem, whose proof is given in Section 4, is the main contribution of this
paper.

Theorem 3.7. Let H be an efficient pairwise-independent function family mapping strings
of length n to strings of length ℓ = ℓ(n), and let s = s(n) be a polynomial-time computable
function. Then NOVY⟨Hs⟩ is (T, δ)-binding, where T (n) = p(n) · 2ℓ for some p ∈ poly and
δ(n, r, ε) ∈ Ω

(
ε2 ·min{1, 1/r} · 1

210ℓ·n8

)
.

Theorem 3.7 also holds for function families of weaker independence guarantee.

Definition 3.8 (XOR-universal function families). Let H be a function family mapping
strings of length n to strings of length ℓ. We say that H is XOR-universal if

Prh←H[h(x1)⊕ h(x2) = y] = 2−ℓ

for any distinct x1, x2 ∈ {0, 1}n and any y ∈ {0, 1}ℓ.

We note that while not pairwise independent (maps 0n to 0ℓ), the family Linℓ,n is XOR-
universal for every choice of ℓ and n.

8Note that h
′
can be found in deterministic polynomial time using Gaussian elimination.
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Corollary 3.9. Let T , δ, s and ℓ be as in Theorem 3.7. Then the following protocols are
(T, δ)-binding:

1. NOVY⟨Hs⟩, where H is an efficient XOR-universal function mapping strings of length
n to strings of length ℓ = ℓ(n).

2. NOVY⟨(Fulls·ℓ,n)ℓ,2ℓ,...,s·ℓ⟩, where s · ℓ ≤ n.

Proof. The proof of the first part readily follows from the proof of Theorem 3.7. Yet for the
sake of completeness we prove it below by reducing it to (the statement of) Theorem 3.7.
Let S∗ be an algorithm that breaks the binding of NOVY⟨Hs⟩ with probability ε (according
to Equation (1)) and let H′ be the pairwise independent family {(h, b) : h ∈ H, b ∈ {0, 1}ℓ},
where (h, b)(x) := h(x) ⊕ b. Consider the following algorithm that uses S∗ to break the
binding of NOVY⟨(H′)s⟩: upon receiving the function (h, b) ∈ H′ from R, it sends h to S∗,
XORs the answer of S∗ with b and sends the result back to R. It is immediate that the above
algorithm breaks the binding of NOVY⟨H′s⟩ with probability ε, and thus the proof of the
this part follows from Theorem 3.7.

Fact 2.5 yields that any algorithm that breaks the binding of NOVY⟨(Fulls·ℓ,n)ℓ,2ℓ,...,s·ℓ⟩
with probability ε, breaks that of NOVY⟨(Linℓ,n)ℓ,2ℓ,...,s·ℓ⟩ with probability Ω(ε) (i.e., con-
ditioned on an event of constant probability over the execution of NOVY⟨(Lins·ℓ,n)ℓ,2ℓ,...,s·ℓ⟩,
the receiver’s messages in NOVY⟨(Lins·ℓ,n)ℓ,2ℓ,...,s·ℓ⟩ are distributed exactly as the receiver’s
messages in NOVY⟨(Fullℓ,n)ℓ,2ℓ,...,s·ℓ⟩). Since (Lins·ℓ, n)ℓ,2ℓ,...,s·ℓ is XOR universal, the first
part of Corollary 3.9 yields that NOVY⟨(Linℓ,n)ℓ,2ℓ,...,s·ℓ⟩ is (T, δ)-binding, and therefore so is
NOVY⟨(Fulls·ℓ, n)ℓ,2ℓ,...,s·ℓ)⟩. �

Remark 3.10 (Further extensions and the original NOVY protocol). Consider an s-
piece function family H over {0, 1}n, where each piece outputs ℓ bits. For z ∈ {0, 1}kℓ
and a k-element vector h that is a prefix of some element in H, define Consisth,z :=

{x ∈ {0, 1}n : h(x) = z}. Assume that for any possible such pair, the family Hh =
{h : (h, h) is a prefix of some element in H} is an efficient XOR-universal over Consisth,z,

9

then the proof of Theorem 3.7 readily extends to the family H.
The above extension is of interest since it applies to the function family used by the

original NOVY protocol. Since protocol NOVY⟨(Fulls·ℓ, n)ℓ,2ℓ,...,s·ℓ⟩ achieves the same hiding
guarantee as the NOVY protocol does, we do not formally prove the above observation.

4 Binding Proof

Let H = {Hn}n∈N be an efficient function family mapping strings of length n to strings
of length ℓ(n), where ℓ(n) is an arbitrary integer-valued function, and let (S,R) =
NOVY⟨Hs(n)⟩, where s is a polynomial-time computable integer-valued function. For integer-
valued function t(n) ≤ s(n) to be determined by the analysis, we define the following oracle-
aided algorithm.

9That is, Prh←H[h(x1)⊕ h(x2) = y] = 2−ℓ for any distinct x1, x2 ∈ Consisth,z and any y ∈ {0, 1}ℓ.
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Algorithm 4.1 (A).

Input: y ∈ {0, 1}n.

Oracle: S∗.

1. Let h← SearcherS
∗
(y).

2. Return InverterS
∗
(h).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The oracle-aided algorithms Searcher and Inverter are defined as follows:

Algorithm 4.2 (Searcher).

Input: y ∈ {0, 1}n.

Oracle: S∗.

1. For k = 1 to t(n) do:

Do the following for
⌈
2ℓ(n) · ln t(n)

⌉
times:

(a) Let hk ← Hn.

(b) Break the inner loop if S∗(1n, h1, . . . , hk) = hk(y), where S∗(1n, h1, . . . , hk) stands
for S∗ answer on input 1n and receiver’s messages h1, . . . , hk.

If the end of the inner loop has reached, output “Fail” and abort the execution.

2. Return (h1, . . . , ht).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algorithm 4.3 (Inverter).

Input: h ∈ Ht(n)
n .

Oracle: S∗.

1. Let h
′ ← Hs(n)−t(n)

n .

2. Let ((x0, y0), (x1, y1)) be the final output of S∗(1n, (h, h
′
)).

3. Return x0 with probability 1
2
, and x1 otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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It is straightforward that AS∗ runs in time poly(n) · 2ℓ(n) (counting an oracle call as a
single operation). In the following we fix n ∈ N, a set L ⊆ {0, 1}n and a binary relation
W ⊆ {0, 1}∗ × L. We also fix a cheating sender S∗ that breaks the binding of NOVY⟨Hs⟩
with probability ε with respect to W and L (according to Definition 3.2). Namely,

Pr(((x0,y0),(x1,y1)),(h,z))←(S∗,R)(1n)[h(y0) = h(y1) = z ∧ y0 ̸= y1 ∧ (x0, y0), (x1, y1) ∈ W ] = ε (3)

We assume without loss of generality that S∗ is deterministic (the generalization to random-
ized adversaries is standard) and prove the theorem showing that

Pry←L[A
S∗(y) ∈ Wy] ≥

c · ε2

210ℓ · n8
·max{1, 2sℓ/|L|} (4)

for a universal constant c > 0.
Throughout the proof we omit n from the notations, and let A, Searcher and Inverter,

stand for AS∗ , SearcherS
∗
and InverterS

∗
respectively. We assume without loss of generality

that S∗ always replies with valid messages (i.e., elements inside {0, 1}ℓ). First time readers
are encouraged to focus on the case where ℓ = 1, s = n and L = {0, 1}n.

Following the intuition given in the introduction, we consider the success probability of
S∗ with respect to the following distributions:

• DReal :=
(
h, y

)
y←L,h←Searcher(y)

, and

• DIdeal :=
(
h, y

)
h←Ht,y←Consist(h)

,

where Consist(h) := {y ∈ L : h(y) = S∗(h)} (i.e., Consist(h) is the set of elements that are
consistent with S∗’s answers on h).

Since DReal is the distribution a random execution of A (over a random y) induces on
the values of y and h, the success probability of A, in satisfying W , equals the success
probability of Inverter over DReal (i.e., to Pr(h,y)←DReal

[Inverter(h) ∈ Wy]). We lowerbound the
latter probability by relating it to the success probability of Inverter over DIdeal. Specifically,
we first show (Lemma 4.4) that DReal and DIdeal assign similar mass to most elements in
the support of DIdeal, and then prove (Lemma 4.5) that Inverter’s success probability over
DIdeal (in the task of satisfying W) is not only high but also “well spread”. Namely, even
if we ignore the contribution to the success probability of some sufficiently small number of
values in the support of DIdeal, this success probability remains high. Having that, we are
guaranteed that the success probability of Inverter is high with respect to any distribution
that assigns about the same mass to most elements in the support of DIdeal, and in particular
with respect to DReal.

For k ∈ {0, . . . , s} let µk := |L|/2kℓ.

Lemma 4.4. Assuming t ≥ 4 then

Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| > 8t4 · 23ℓ

]
<

10t3 · 22ℓ

µt−1
,

where Dominated = {(h, y) ∈ Supp(DIdeal) : DReal(h, y) ≥ 1
28
· DIdeal(h, y)}.
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Namely, with high probability over the choice of h ← Ht, the number of elements that
are consistent with h and whose weight according to DIdeal is much larger than their weight
according to DReal, is limited.

Lemma 4.5. Assume t ≥ 4 and µt−1 ≥ 12t3·22ℓ
ε

, and let Secluded be an arbitrary subset of
Supp(DIdeal) with

Prh←Ht

[∣∣(h,Consist(h)) ∩ Secluded
∣∣ > √ε · 2(s−t)ℓ−3] ≤ ε/2.

Then
Pr(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]
≥ ε

64 · µt

.

Namely, if |(h,Consist(h))∩ Secluded| is not too large on the average, then Inverter does
well on DIdeal even when ignoring the contribution of Secluded.

The proof of Lemmas 4.4 and 4.5 is given below, but first let us use them for proving
Theorem 3.7.

Proof of Theorem 3.7. Let q :=
⌊
1
ℓ
(min{log |L|, sℓ}+ log ε− 8 log n− 6ℓ− 9)

⌋
. We first

prove the theorem for the case q < 4, and then complete the proof by handling the case
q ≥ 4.

Assume q < 4 and consider the success of A when setting t = 0. To lowerbound A’s
success probability in this case, we compute

Pry←L[A(y) ∈ Wy] = Pry←L[Inverter() ∈ Wy] ≥
ε

2 · |L|
=

ε

2 ·min{|L|, 2sℓ}
·min{1, 2

sℓ

|L|
} (5)

Since by assumption q < 4, it holds that min{|L|, 2sℓ} ≤ 24ℓ−log ε+8 logn+6ℓ+9 = 29·210ℓ·n8

ε
. It

follows that Pry←L[A(y) ∈ Wy] ≥ ε2

210·210ℓ·n8 · min{1, 2sℓ|L|}, concluding the proof for the case
q < 4.

Assume q ≥ 4 and let t = q. We start by showing that µt−1 is large enough, so we can
later invoke Lemma 4.5 with parameter t. Indeed,

µt−1 =
|L|

2(t−1)ℓ
>

|L|
2−ℓ · |L| · ε · n−8 · 2−6ℓ · 2−9

=
512 · n8 · 27ℓ

ε
>

12t3 · 22ℓ

ε
, (6)

where the last inequality holds since t ≤ n.
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Let Dominated be the set defined in Lemma 4.4. It holds that

Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| >

√
ε · 2(s−t)ℓ−3

]
(7)

≤ Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| > 8t4 · 23ℓ

]
<

10t3 · 22ℓ

µt−1

=
10t3 · 22ℓ · 2(t−1)ℓ

|L|

≤ 10t3 · 22ℓ

|L|
· |L| · ε
n8 · 27ℓ · 29

≤ 10n3 · 22ℓ · ε

n8 · 27ℓ · 29
≤ ε/4.

The first inequality holds since 2(s−t)ℓ−3 ≥ 2sℓ−(sℓ+log ε−8 logn−6ℓ−9)−3 ≥ 1
ε
· n8 · 26ℓ · 26 ≥

1
ε
·
(
8t4 · 23ℓ

)2
(note that t ≤ n), the second one by Lemma 4.4 and the third one by the

definition of t. Applying Lemma 4.5 for Secluded := Supp(DIdeal) \Dominated, yields that

Pr(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated

]
≥ ε

64 · µt

(8)

It follows that

Pry←L[A(y) ∈ Wy] = Pr(h,y)←DReal
[Inverter(h) ∈ Wy]

≥ Pr(h,y)←DReal
[Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated]

≥ 1

28
· Pr(h,y)←DIdeal

[Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated]

≥ 1

28
· ε

64 · µt

≥ 1

28 · 64 · 29
· ε2

n8 · 26ℓ
,

concluding the proof for the case q ≥ 4. �
Remark 4.6. (Knowing t) The value of t in the above proof depends on ε and |L|. This
seems to contradict our binding formalism (see Definition 3.2) where A does not know ε and
L. However, selecting t at random only decrease A’s success probability by a factor s. More
interestingly, setting t = s guarantees that A success probability is as claimed in the theorem;
the effect of setting t to s is analogous to setting t arbitrarily and changing Inverter to select
h
′
using the rewinding method of Searcher rather than uniformly at random. For every value

h
′
that satisfies y ∈ Consist(h, h

′
), the probability of selecting it with the rewinding technique

is only larger than the probability of uniformly selecting it. Where a value of h
′
such that

y ̸∈ Consist(h, h
′
), does not contribute in our analysis to the success probability of A. It

follows that the distinction between Searcher and Inverter is not necessary for the proof (but
is only used for presentation reasons).
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4.1 Bounding the Size of Consist(h)

The following simple observation plays an important role in the proofs of Lemmas 4.4 and 4.5.

Claim 4.7. Prh←Hk [14 · µk ≤ |Consist(h)| ≤ 4 · µk] ≥ 1− 3k3·22ℓ
µk−1

, for every k ∈ {2, . . . , s}.

Proof. Fix k ∈ {2, . . . , s}. We call h ∈ Hj balanced if (1− 1
k
)j ·µj ≤

∣∣Consist(h)∣∣ ≤ (1+ 1
k
)j ·µj

and prove the claim showing that

Prh←Hj [h is balanced] ≥ 1− 3jk2 · 22ℓ

µj−1
(9)

for every j ∈ {0, . . . , k}, letting µ−1 = µ0. Equation (9) holds trivially for j = 0. In the
following we assume for j ≥ 0, and prove for j + 1.

We say that h ∈ H well partitions the set Consist(h), where h ∈ Hj,
if (1− 1

k
) ·

∣∣Consist(h)∣∣ ≤ 2ℓ ·
∣∣Consist(h, h)∣∣ ≤ (1 + 1

k
) ·

∣∣Consist(h)∣∣. Lemma 2.3 yields that

Prh←H[h well partitions Consist(h)] ≥ 1− k2 · 22ℓ∣∣Consist(h)∣∣ (10)

for every h ∈ Hj, and it follows that

Prh←Hj+1 [h is balanced]

≥ Prh←Hj [h is balanced] · Pr(h,h)←Hj+1 [(h, h) is balanced | h is balanced]

≥ Prh←Hj [h is balanced] · Prh←Hj+1 [h well partitions Consist(h) | h is balanced]

≥ (1− 3jk2 · 22ℓ

µj−1
) · (1− k2 · 22ℓ

(1− 1
k
)jµj

)

≥ 1− 3jk2 · 22ℓ

µj−1
− 3k2 · 22ℓ

µj

≥ 1− 3(j + 1)k2 · 22ℓ

µj

.

�

4.2 Proving Lemma 4.4

In this section we prove Lemma 4.4.

Lemma 4.8 (Lemma 4.4, restated). Assuming t ≥ 4 then

Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| > 8t4 · 23ℓ

]
<

10t3 · 22ℓ

µt−1
,

where Dominated = {(h, y) ∈ Supp(DIdeal) : DReal(h, y) ≥ 1
28
· DIdeal(h, y)}.

We bridge between DIdeal and DReal via the following hybrid distributions: for k ∈
{0, . . . , t− 1} and h ∈ Hk, define
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• Dh
Real := (h, y)

y←Consist(h),h←(Searcherh(y))k+1
and

• Dh
Ideal := (h, y)h←H,y←Consist(h,h),

where Searcherh(y) is the hybrid algorithm that first fixes its first k hash functions to h, and
then continues as (the non-hybrid) original Searcher would with respect to this fixing.

For (h1, . . . , hi, y) ∈ H t × {0, 1}n, let γh1,...,hi−1(hi, y) :=
D

h1,...,hi−1
Ideal (hi,y)

D
h1,...,hi−1
Real (hi,y)

. Hence, for (h =

(h1, . . . , ht), y) ∈ Supp(DIdeal) we can write

DIdeal(h, y) (11)

=
1

|H|t−1
· Dh1,...,ht−1

Ideal (ht, y)

=
1

|H|t−1
· γh1,...,ht−1(ht, y) · Dh1,...,ht−1

Real (ht, y)

=
1

|H|t−1
· γh1,...,ht−1(ht, y) ·

1

|Consist(h1, . . . , ht−1)|
· Pr[(Searcherh1,...,ht−1(y))t = ht]

=
1

|H|t−1
· γh1,...,ht−1(ht, y) · |H| · Dh1,...,ht−2

Ideal (ht−1, y) · Pr[(Searcherh1,...,ht−1(y))t = ht]

=
1

|H|t−2
· γh1,...,ht−1(ht, y) · γh1,...,ht−2(ht−1, y) · Dh1,...,ht−2

Real (ht−1, y) · Pr[(Searcherh1,...,ht−1(y))t = ht]

...

=
(
Πi∈[t]γ

h1,...,hi−1(hi, y)
)
· Dλ

Real(h1, y) ·
(
Πi∈{2,...,t}Pr[(Searcher

h1,...,hi−1(y))i = hi]
)

=
(
Πi∈[t]γ

h1,...,hi−1(hi, y)
)
· 1

|L|
· Pr[Searcher(y) = h]

=
(
Πi∈[t]γ

h1,...,hi−1(hi, y)
)
· DReal(h, y),

where in above λ stands for the zero length vector.
Equation (11) yields the following characterization of the set Dominated.

Claim 4.9. Dominated ⊇ {((h1, . . . , ht), y) ∈ Supp(DIdeal) : ∀i ∈ [t] (1 − 3
t
) ·

D
h1,...,hi−1

Ideal (hi, y) ≤ D
h1,...,hi−1

Real (hi, y)}.

Proof. Fix (h = (h1, . . . , ht), y) ∈ Supp(DIdeal) with (1− 3
t
)·Dh1,...,hi−1

Ideal (hi, y) ≤ D
h1,...,hi−1

Real (hi, y)

for every i ∈ [t]. Equation (11) yields that DIdeal(h, y) ≤
(

1
1− 3

t

)t

·DReal(h, y). Since (
1

1− 3
t

)t ≤
28 for t ≥ 4, it follows that (h, y) ∈ Dominated. �

Recall that in order to prove Lemma 4.4, we need to show that Dominated is large. By
Claim 4.9, it suffices to lowerbound the number of pairs (h = (h1, . . . , ht), y) ∈ Supp(DIdeal)

for which (1− 3
t
) ·Dh1,...,hi−1

Ideal (hi, y) ≤ D
h1,...,hi−1

Real (hi, y) for every i ∈ [t], a task that we do using
the next lemma.
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Lemma 4.10. For h ∈ Hk, where k ∈ {0, . . . , t − 1}, there exists a set NonTypY(h) ⊆
Consist(h) of size less than 8t3 · 23ℓ such that the following holds: let BadH(h) := {h ∈
H : ∃y ∈ Consist(h) \ NonTypY(h) : (1 − 3

t
) · Dh

Ideal(h, y) > Dh
Real(h, y)}, then Prh←H[h ∈

BadH(h)] < t2·22ℓ
|Consist(h)| .

Namely, Lemma 4.10 bounds the number of y’s inside Consist(h) for which the event

(1− 3
t
) · Dh

Ideal(H, y) > Dh
Real(H, y) is likely to happen. Before proving Lemma 4.10, we first

use it to prove Lemma 4.4.

Proof. (of Lemma 4.4) For h ∈ Hk, let NonTypY(h) be the set guaranteed by Lemma 4.10
(assuming for ease of notation that there exists a single such set; in case there are sev-
eral of them, we arbitrarily choose one). Let BadH := {h = (h1, . . . , ht) ∈ Ht : ∃i ∈
[t] : hi ∈ BadH(h1, . . . , hi−1)}, and for h = (h1, . . . , ht) ∈ Ht let AllNonTypY(h) :=∪

i∈[t]NonTypY(h1, . . . , hi−1).

Claim 4.9 yields that {(h, y) ∈ Supp(DIdeal) : y ∈
(
Consist(h) \ AllNonTypY(h)

)
∧ h /∈

BadH} ⊆ Dominated, and therefore

Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| ≥ 8t4 · 23ℓ

]
(12)

≤ Prh←Ht [∃y ∈
(
Consist(h) \ AllNonTypY(h)

)
∧ (h, y) /∈ Dominated]

≤ Prh←Ht [h ∈ BadH],

where for the first inequality observe that if the number of y ∈ Consist(h) with (h, y) ̸∈
Dominated is at least 8t4 ·23ℓ, then there exists at least one y ∈ Consist(h)\AllNonTypY(h)
with (h, y) /∈ Dominated (note that |AllNonTypY(h)| < 8t4 · 23ℓ).

We conclude the proof showing that Prh←Ht [h ∈ BadH] is small. For q > 0 compute

Prh←Ht [h ∈ BadH] ≤
∑
i∈[t]

Pr(h1,...,hi)←Hi [h ∈ BadH(h1, . . . , hi−1)] (13)

≤
∑
i∈[t]

(
Pr(h1,...,hi−1)←Hi−1 [|Consist(h1, . . . , hi−1)| < q] +

t2 · 23ℓ

q

)

=
t3 · 22ℓ

q
+
∑
i∈[t]

Pr(h1,...,hi−1)←Hi−1 [|Consist(h1, . . . , hi−1)| < q],
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where the second inequality is by Lemma 4.10. Taking q = µt−1

4
, Claim 4.7 yields that∑

i∈[t]

Pr(h1,...,hi−1)←Hi−1 [|Consist(h1, . . . , hi−1)| < q] (14)

≤
∑
i∈[t]

Pr(h1,...,hi−1)←Hi−1 [|Consist(h1, . . . , hi−1)| <
µi−1

4
]

≤
∑
i∈[t]

3t3 · 22ℓ

µi−2

<
6t3 · 22ℓ

µt−2
,

yielding that

Prh←Ht [h ∈ BadH] <
4t3 · 22ℓ

µt−1
+

6t3 · 22ℓ

µt−1
=

10t3 · 22ℓ

µt−1
(15)

Combining Equations (12) and (15), yields that

Prh←Ht

[
|{y ∈ Consist(h) : (h, y) /∈ Dominated}| > 8t4 · 23ℓ

]
≤ Prh←Ht [h ∈ BadH] < 10t3·22ℓ

µt−1
.
�

4.2.1 Proving Lemma 4.10

As a warmup we start by focusing on the Boolean case (i.e., ℓ = 1). Consider the Boolean

matrix M ∈ {0, 1}|Consist(h)|×|H| with M(y, h) = 1 iff y ∈ Consist(h, h), where we identify

the indices into M with the set Consist(h)×H. The distribution Dh
Ideal can be described in

relation to M as: choose a random column of M and draw the index of a random 1-entry
from this column (where a “1-entry” is an entry of the matrix that is assigned the value 1).

The distribution Dh
Real can also be described in relation to M : choose a random row of M

and keep drawing random entries from this row until a 1-entry is picked. Then return its
index and stop drawing (where in case of ⌈2 log t⌉ failed attempts, return ⊥).

Compare the matrix M with the matrix M̂ ∈ {0, 1}|Consist(h)|×|H|, where M̂(y, h) = h(y).

Note that M can be derived from M̂ by flipping all values in some of its columns (specifically,
the column corresponding to h is flipped in case y /∈ Consist(h, h)). The pairwise indepen-

dence of H yields that most columns of M̂ are balanced (i.e., have about the same number

of 1-entries), and thus the same holds for M . Hence, the mass that Dh
Ideal assigns to most of

the 1-entries of M is close to 2
|H| ·

1
|Consist(h)| . The pairwise independence of H also yields that

most rows of M are also balanced. Since DReal =⊥ only with small probability, the mass
that Dh

Real assigns to most 1-entries in M is also close to 2
|H| ·

1

|Consist(h)| . We conclude that

the 1-entries in a random row of M (a random h ∈ H) get about the same mass in Dh
Real and

in Dh
Ideal, and the proof of the lemma follows. Formal proof is given below.
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Proof of Lemma 4.10. We take NonTypY(h) as the set {y ∈ Consist(h) : αh(y) >
1
2ℓ
·(1+ 1

t
)},

for αh(y) := Prh←H[y ∈ Consist(h, h)]. The proof that NonTypY(h) has the two properties
stated in Lemma 4.10 (i.e., bounded size, and dominance of DReal over DIdeal) is carried via
the next two claims.

Claim 4.11. |NonTypY(h)| < 8t3 · 23ℓ.

Proof. In the following let H be uniformly distributed over H, and for h ∈ H let Xh :=∣∣NonTypY(h) \ Consist(h, h)
∣∣. The definition of NonTypY(h) yields that

E[XH ] = E[|NonTypY(h) \ Consist(h,H)|] (16)

= |NonTypY(h)| −
∑

y∈NonTypY(h)

Pr[y ∈ Consist(h,H)]

< |NonTypY(h)| − (1 +
1

t
)ν,

for ν = |NonTypY(h)|
2ℓ

. On the other hand,

Pr

[
XH < |NonTypY(h)| − (1 +

1

2t
)ν

]
(17)

= Pr

[∣∣NonTypY(h) ∩ Consist(h,H)
∣∣ > (1 +

1

2t
)ν

]
≤ Pr

[
∃z ∈ {0, 1}ℓ :

∣∣{y ∈ NonTypY(h) : H(y) = z}
∣∣ > (1 +

1

2t
)ν

]
<

4t2 · 2ℓ

ν
,

where the last inequality is by Lemma 2.3. We conclude that

E [XH ] ≥ Pr

[
XH ≥ |NonTypY(h)| − (1 +

1

2t
)ν

]
·
(
|NonTypY(h)| − (1 +

1

2t
)ν

)
(18)

≥ (1− 4t2 · 2ℓ

ν
) · (|NonTypY(h)| − (1 +

1

2t
)ν)

≥ |NonTypY(h)| − (1 +
1

2t
+

4t2 · 22ℓ

ν
)ν.

Assume towards a contradiction that |NonTypY(h)| ≥ 8t3 · 23ℓ (and hence, ν ≥ 8t3 · 22ℓ),
Equation (18) yields that E[XH ] ≥ |NonTypY(h)|−(1+ 1

2t
+ 4t2·22ℓ

8t3·22ℓ )ν = |NonTypY(h)|−(1+
1
t
)ν, in contradiction to Equation (16). Hence, we have proved that |NonTypY(h)| < 8t3 ·23ℓ.

�

The next claim completes the proof of Lemma 4.10, showing that NonTypY(h) indeed
contains all the “non typical” y’s.
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Claim 4.12. Prh←H[∃y ∈ Consist(h) \ NonTypY(h) : (1 − 3
t
) · Dh

Ideal(h, y) > Dh
Real(h, y)] <

t2·22ℓ
|Consist(h)| .

Proof. By definition, Dh
Ideal(h, y) =

1
|H| ·

1
|Consist(h,h)| for every h ∈ H and y ∈ Consist(h, h).

In addition, the mass that Dh
Real assigns to every such pair (h, y), is the probability that y

is chosen (i.e., 1
|Consist(h)|) times the probability that h is chosen in one of the

⌈
2ℓ · ln t

⌉
sam-

pling attempts done by Searcher(y) (i.e.,
∑⌈2ℓ·ln t⌉

i=1 PrH[h] ·Pr[first (i− 1) attempts failed] =∑⌈2ℓ·ln t⌉
i=1

1
|H| · (1− αh(y))

i−1). All in all,

Dh
Real(h, y) =

1

|Consist(h)|
· 1

|H|
·
⌈2ℓ·ln t⌉∑

i=1

(1− αh(y))
i−1 (19)

Assuming that y ∈ Consist(h, h) \ NonTypY(h), Equation (19) yields that

Dh
Real(h, y) ≥

1

|Consist(h)|
· 1

|H|
·
1− (1− 1

2ℓ
· (1 + 1

t
))⌈2ℓ·ln t⌉

1
2ℓ
· (1 + 1

t
)

(20)

≥ 1

|Consist(h)|
· 1

|H|
·
1− (1− 1

2ℓ
)⌈2ℓ·ln t⌉

1
2ℓ
· (1 + 1

t
)

≥ 1

|Consist(h)|
· 1

|H|
·

1− 1
t

1
2ℓ
· (1 + 1

t
)
,

where for the last inequality we use that (1− 1
x
)x ≤ e−1 for x ≥ 1.

Let NonTypH(h) := {h ∈ H :
∣∣Consist(h, h)∣∣ < (1− 1

t
) · |Consist(h)|

2ℓ
}. Observe that

Prh←H[h ∈ NonTypH(h)] (21)

≤ Prh←H

[
∃z ∈ {0, 1}ℓ :

∣∣{y ∈ Consist(h) : h(y) = z}
∣∣ < (1− 1

t
) ·

∣∣Consist(h)∣∣
2ℓ

]

<
t2 · 22ℓ

|Consist(h)|
,

where the second inequality is by Lemma 2.3. We conclude the claim’s proof, showing
that (1 − 3

t
) · Dh

Ideal(h, y) ≤ Dh
Real(h, y) for every pair (h, y) with h ∈ H \ NonTypH(h) and

y ∈ Consist(h, h)\NonTypY(h). Indeed, (by Equation (20)) Dh
Real(h, y) ≥

1− 1
t

1+ 1
t

· 2ℓ

|Consist(h)| ·
1
|H|

and (by the definition of NonTypH(h)) Dh
Ideal(y, h) ≤ 1

(1− 1
t
)
· 1
|H| ·

2ℓ

|Consist(h)| for every such pair,

yielding that
Dh

Real(h,y)

Dh
Ideal(h,y)

≥ (1− 1
t
)2

1+ 1
t

> 1− 3
t
. �

�
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4.3 Proving Lemma 4.5

In this section we prove Lemma 4.5.

Lemma 4.13 (Lemma 4.5, restated). Assume t ≥ 4 and µt−1 ≥ 12t3·22ℓ
ε

, and let Secluded be
an arbitrary subset of Supp(DIdeal) with

Prh←Ht

[∣∣Secludedh := {y ∈ Consist(h) : (h, y) ∈ Secluded}
∣∣ > √ε · 2(s−t)ℓ−3] ≤ ε/2.

Then
Pr(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]
≥ ε

64 · µt

.

Proof. For h ∈ Ht, let εh be the probability that S∗ breaks the binding of NOVY⟨Hs⟩ with
respect toW and L (according to Definition 3.2), conditioned on h being the first t functions
sent by the R. Note that Eh←Ht [εh] = ε.

Let Typical := {h ∈ Ht : |Secludedh| ≤ qh ∧ |Consist(h)| ≤ 4µt}, where qh =⌊√
2(s−t)ℓ−1 · εh

⌋
. Note that

Eh←Ht [h /∈ Typical] ≤ Prh←Ht [|Secludedh| > qh] + Prh←Ht [|Consist(h)| > 4µt] (22)

≤ ε/2 +
3t3 · 22ℓ

µt−1
≤ 3ε/4,

where the second inequality is by Claim 4.7 and the guarantee about Secluded (as given in
the lemma statement). Let χTypical be the characteristic function of Typical. Equation (22)
yields that

Eh←Ht [εh · χTypical(h)] ≥ Eh←Ht [εh]− Prh←Ht [h /∈ Typical] ≥ ε− 3ε/4 = ε/4 (23)

We define the “weight” of y ∈ Consist(h) with respect to h ∈ Ht, as wh(y) := Pr[Inverter(h) ∈
Wy]. It is easy to verify that ∑

y∈Consist(h)

wh(y) ≥ εh (24)

The following claim yields that for h ∈ Typical, the above sum remains high even when
ignoring the contribution of Secludedh.

Claim 4.14. Let h ∈ Ht and let V ⊆ Consist(h) be of size at most qh, then∑
y∈Consist(h)\V wh(y) ≥ εh/4.

Proof. The pairwise independence of H yields that

Pr
h
′←Hs−t [∃y0 ̸= y1 ∈ V : h

′
(y0) = h

′
(y1)] ≤

|V|2

2(s−t)ℓ
≤

q2
h

2(s−t)ℓ
≤ 2(s−t)ℓ−1 · εh

2(s−t)ℓ
≤ εh/2 (25)
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Let y0 and y1 be the pair of elements returned by S∗ on a successful cheat. Equation (25)
yields that the probability that both y0 and y1 are inside V is at most εh/2. It follows that
the probability that S∗ cheats successfully while at least one of y0 and y1 is outside V is at
least εh/2. Note that each event where S∗ cheats successfully and outputs an element yi = y,
contributes half its probability to the total weight of y. Thus, the sum of weights of the
elements in Consist(h)\V is at least εh/4. �

We conclude that

Pr(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]
= Eh←Ht

[
1

|Consist(h)|
·

∑
y∈Consist(h)\Secludedh

wh(y)

]

≥ 1

4µt

· Eh←Ht

[
χTypical(h) ·

∑
y∈Consist(h)\Secluded

wh(y)

]

≥ 1

4µt

· Eh←Ht

[
χTypical(h) · εh/4

]
≥ 1

64µt

· ε,

where the penultimate inequality is by Claim 4.14, and the last one by Equation (23). �

5 Conclusions

An interesting open question regards the optimality of the binding guarantee given in Theo-
rem 3.7. Particularly, is there a linear-preserving reduction from the security of an interactive
hashing protocol to satisfying the underlying relation?10 There are three possible directions
for improvement: (1) use a different interactive hashing protocol than the one considered in
Theorem 3.7, (2) use a different implementation for AS∗ to satisfy the relation, or (3) improve
the analysis of AS∗ success probability.

We mention that our improvement in parameters over the NOVY proof is mainly in the
third item (i.e., the analysis of the reduction). In the following we show that our analysis
cannot be pushed to show a linear reduction. Namely, we present a (non-efficient) adversary
S∗ that breaks the binding of NOVY⟨Hn⟩ with probability ε (in the meaning of Equation (1)),
where H is a family of Boolean pairwise independent hash functions, but AS∗ only breaks
the underlying relation (in this case a relation imposed by a permutation) with probability
O(ε1.4).

For a fixed ε > 0 consider the following cheating sender S∗ for NOVY⟨Hn⟩: the cheating
sender S∗ answers the first (n − log 1

ε
) questions with arbitrary Boolean answers, then it

10In a linear-preserving reduction, the time-success ratio of an adversary violating the hardness of the
relation, is larger than the time-success ratio of an adversary breaking the binding of the interactive hashing
protocol, by at most a multiplicative polynomial factor.

26



randomly selects two distinct elements y1, y2 ∈ {0, 1}n that are consistent with the protocol
so far and answers the remaining hash functions as follows: on h ∈ H, it checks whether
h(y1) = h(y2), if positive it sends h(y1) back to the receiver; otherwise, it raises a flag and
answers at random. At the end of the protocol, if the flag was not raised S∗ inverts f on
both y1 and y2 (in a brute force manner) and outputs the result.

The pairwise independence of H yields that S∗ breaks the binding of NOVY⟨Hn⟩ with
provability ε. Where in order for AS∗(y) to find x ∈ Wy, it first has to be the case that
y ∈ {y1, y2}; since the number of elements consistent with the protocol after (n − log 1

ε
)

steps is concentrated around 1/ε (see Claim 4.7), the latter happens with probability O(ε).
Assuming that y is one of {y1, y2} (say that y = y1), for succeeding AS∗ has to choose
in each step a hash function h with S∗(h) = h(y) = h(y2). The pairwise independence
of H yields that Prh←H[S

∗(h) ̸= h(y2) | S∗(h) = h(y)] = 1
4
. Therefore, the probability

that S∗(h) = h(y) = h(y2) in each of the last log 1
ε
steps, is at most (3

4
)log

1
ε < ε0.4 (note

that A has no clue what y2 is). We conclude that the AS∗ ’s overall success probability is
O(ε · ε0.4) = O(ε1.4).

Yet, the existence of more security preserving reductions for NOVY⟨Hn⟩ (or more gen-
erally, to any protocol that follows the NOVY paradigm), not to mention the existence of
different protocols with better security preserving reductions, remains an interesting open
question.
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A Statistically Hiding Commitment from Regular One-Way
Functions

In this section we use the interactive hashing theorem from Section 3 to give construct
statistically hiding commitment from regular one-way functions, reproving [8, Theorem 4.4].

Theorem A.1. Assume there exist regular one-way functions, then there exist statistically
hiding and computationally binding commitment schemes.11

A commitment scheme is a two-stage protocol between a sender and a receiver. In the
first stage, called the commit stage, the sender commits to a private string σ. In the second
stage, called the reveal stage, the sender reveals σ and proves that it was the value to which
she committed in the first stage. We require two properties of commitment schemes. The
hiding property says that the receiver learns nothing about σ in the commit stage. The
binding property says that after the commit stage, the sender is bound to a particular value
of σ; that is, she cannot successfully open the commitment into two different values in the
reveal stage. In a statistically hiding and computationally binding commitment scheme,
the hiding holds information theoretically (i.e., even an all powerful learns nothing about
σ), where the binding property only guaranteed to hold against polynomial-time senders.
A (known) regular one-way function is an efficiently computable function that is hard to
invert, and all its images have the same, efficiently computable, number of preimages. For
the formal definitions of these primitives, see for example [8].

11[8, Theorem 4.4] also holds with respect to somewhat more general choice of one-way functions. Specif-
ically, [8] consider the case where the number of preimages is not fixed for all outputs, but rather can be
efficiently approximated. As in [8], the proof of Theorem A.1 can be easily extended to such functions.
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Proof of Theorem A.1. We use our new interactive hashing theorem to get a weakly hiding
bit commitment scheme (see Definition A.4), and the existence of a full-fledge commitment
scheme follows via standard amplification techniques (cf., [8]). The heart of the construction
is applying the new interactive hashing protocol to a random output of the regular one-way
function. This simplifies over the construction of [8], which uses an additional hashing layer
before applying the interactive hashing protocol.

Let f : {0, 1}n 7→ {0, 1}n be a regular one-way function,12 let Imf (n) = {f(x) : x ∈
{0, 1}n} and let s = s(n) = ⌊log |Imf (n)|⌋ − 5 (note that the regularity of f yields that s
is polynomial-time computable). Let H and G be efficient Boolean pairwise independent
function families over strings of length n and let (SIH,RIH) = NOVY⟨Hs⟩. We define the bit
commitment protocol Com = (S,R) as follows:

Protocol A.2 (Com = (S = (Sc, Sr),R = (Rc,Rr))).

Commit stage:

Common input: 1n.

Sc’s input: b ∈ {0, 1}.

1. Sc chooses uniformly at random x ∈ {0, 1}n and sets y = f(x).

2. Sc and Rc interacts in a random execution of (SIH(y),RIH)(1
n), with Sc and Rc acting

SIH and RIH respectively.

Let (h, z) be the output of RIH in this execution.

3. Sc chooses uniformly at random g ∈ G and sends g, c = b⊕ g(y) to R.

4. Sc locally outputs x and Rc outputs (h, z, g, c).

Reveal stage:

Common input: 1n, b ∈ {0, 1} and (h, z, g, c).

Sr’s input: x ∈ {0, 1}n.

1. Sr sends x to Rr.

2. Rr accepts if h(f(x)) = z and g(f(x))⊕ b = c.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemma A.3 states that Protocol A.2 is computationally binding, where Lemma A.5
states is weakly hiding. Thus, the proof of Theorem A.1 follows by standard amplification
techniques (e.g., [8, Thm. 5.2]). �

12The assumption that f is length-preserving is without lost of generality, see [3, 11].
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Lemma A.3. Protocol A.2 is computationally binding.

Proof. LetW = {(x, f(x)) : x ∈ {0, 1}n}. The regularity of f yields that it is hard to satisfy
W over a random element of Imf (n). Hence, the proof follows by the binding of (SIH,RIH)
as stated in Theorem 3.7, taking L = Imf (n). �

Definition A.4 (weakly hiding commitment). A commitment scheme Com = (S =
(Sc, Sr),R = (Rc,Rr)) is δ = δ(n)-hiding, if

SD ({viewR∗(Sc(0),R
∗)(1n)}n∈N, {viewR∗(Sc(1),R

∗)(1n)}n∈N) ≤ δ(n),

for any algorithm R∗, where viewR∗(Sc(b),R
∗) denotes the view of R∗ in the commit stage

interacting with Sc(b).

Lemma A.5. Protocol A.2 is 3
4
-hiding.

Proof. Let R∗ be an adversary playing the role of Rc in Com and assume for the ease of
notation that R∗ never causes the sender to abort. For b ∈ {0, 1}, let VR∗(b) = (VIH, G,G(Y )⊕
b) denote R∗’s view in (Sc(b),R

∗), where VIH is R∗’s view in the embedded execution of
(SIH,RIH), and G and Y are the values of g and y chosen by Sc in the interaction. Note that
VIH is independent of b. Let Bad = {v ∈ Supp(VIH) : H∞(Y | v) < 3}. Claim 3.6 yields that

Pr[VIH ∈ Bad] ≤ 1

4
(26)

The Leftover Hash Lemma ([12, Lemma 4.8]) yields the following for every v /∈ Bad and
b ∈ {0, 1}:

∆(VR∗(b), ṼR∗ | VIH = v) = ∆((v,G,G(Y )⊕ b), (v,G, U) | VIH = v) ≤ 1

4
(27)

where ṼR∗ is obtained from VR∗(b) be replacing the value of (G(y) ⊕ b) sent by the sender
with U — a uniformly chosen bit. We conclude that

∆(VR∗(0), VR∗(1)) ≤ ∆(VR∗(0), VR∗(1) | VIH /∈ Bad) + Pr[VIH ∈ Bad]

≤ ∆(VR∗(0), ṼR∗ | VIH /∈ Bad) + ∆(VR∗(1), ṼR∗ | VIH /∈ Bad) + Pr[VIH ∈ Bad]

≤ 1

4
+

1

4
+

1

4
=

3

4
.

�
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