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Abstract

Until recently, the existence of collection of trapdoor permutations
(TDP) was believed (and claimed) to imply oblivious transfer (OT).
It was recently realized, however, that the commonly accepted general
definition of TDP needs to be strengthened slightly in order to make
the security proofs of TDP-based OT go through. The strengthening is
in the “security” requirement of the TDP (i.e., the hardness to invert
condition). Here we present an alternative construction that only
requires the TDP to have “dense domains”. Specifically we present
an implementation of OT based on any dense TDP.
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1 Introduction

1.1 Oblivious transfer (OT)

Oblivious transfer (OT), introduced by Rabin [Rab81], is a fundamental
primitive in cryptography. OT has several equivalent formulations
[Rab81, EGL85, CK90, Cré87, BCR86, CS91]. The version we studied, de-
fined by Even, Goldreich and Lempel [EGL85], is that of one-out-of-two
OT. Informally, a (one-out-of-two) OT is a two-party protocol, in which one
party (the sender) holds two secrets (σ0 and σ1) and the other party (the
receiver) holds a secret bit i. At the end of the protocol, the receiver

learns σi. In addition, the sender gains no knowledge about i and the
receiver gains no knowledge about σ1−i. (For details see Subsection 3.4).

OT implies key agreement (KA) [Rab81, Blu83], signing contracts [EGL85],
and in general any secure multi-party evaluation [Yao86, GMW87].

1.2 Collection of trapdoor permutations (TDP)

A collection of trapdoor permutations (TDP) is among the strongest cryp-
tographic primitives. TDP is a special case of collection of one-way per-
mutations (OWP). Informally, a collection of permutations is one-way if a
permutation chosen from this collection is easy to compute on any input,
but hard to invert on the average. Any collection of OWP provides two
auxiliary efficient algorithms (in addition to the evaluation algorithm): The
permutation sampler algorithm that samples a random permutation in the
collection and the domain sampler algorithm that generates a random ele-
ment in the domain of a given permutation. We stress that the permutation
domains might be arbitrary, as long as there is an efficient domain sampler
that generates a random element in them. Such a collection is called TDP,
if in addition the permutation sampler algorithm produces a trapdoor in-
formation that allows its holder to invert the permutation. (For details see
Subsection 3.6).

1.3 Does TDP implies OT?

Until recently, the existence of TDP was believed (and claimed) to imply
OT. It was recently realized, however, that the commonly accepted general
definition of TDP needs to be strengthened slightly in order to make the
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security proofs of TDP-based OT go through [Gol02]. This is due to the
fact that in the standard TDP-based OT protocol, proposed by [EGL85],
the (honest-but-curious) receiver is expected to sample an element from
the permutation domain such that the inverse of this element remains secret
from its own point of view. The basic TDP security requirement guaran-
tees secrecy against an external observer (who only observes the sampled
element). However, the randomness used by the sampler could potentially
be useful for efficient inversion. As an example we note that the standard
implementation of the Rabin’s collection is not secured against such an ob-
server (which gets in addition to the element itself the random coins used
to generate it) 1. In fact, an arbitrary sampler could be used to construct a
”bad” one, which knowing its random coins yield to the inversion of the ele-
ment. The bad sampler first generates a domain element (using the original
sampler) and then applies the permutation to produce the output 2.

To enable the stronger security feature required by the OT, Goldreich
[Gol02] defines a stronger primitive called “enhanced TDP”. Specifically, an
element produced by the domain sampler of an enhanced TDP should be
hard to invert even when given the randomness used to produce it. (For
details see Subsection 3.7).

1.4 Our result

We show that OT can be based on any dense-TDP, where the latter is a TDP
whose permutation domains are polynomially dense, i.e., contain polynomial
fractions of all strings of a particular length (for details see Subsection 3.8).
The implications of this work are two-fold. First it might be easier to prove
that a TDP has the density property rather than the enhancement assumed
by [Gol02]. Second it might be a step towards implementing OT based
merely on the existence of TDP.

1Goldreich [Gol02] present an alternative implementation of the Rabin’s collection,
which is guaranteed to be secured against such an observer, assuming that the original
implementation secured gainst an external observer (who only observes the sampled ele-
ment).

2It is easy to see that the output of the bad sampler is uniformly distributed on the
permutation’s domain and therefore it is indeed a valid sampler. Moreover, given an
element in the permutation domain along with the random coins used by the bad sampler
to generate it, one can find out the pre-image of the element by evaluating the original
sampler with the same random coins.
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We note that implementing OT based merely on the existence of TDP
seems to be an hard task, since it was proved by [GKM+00] that OT cannot
be black-box reduced to collection of injective trapdoor one-way functions
and it seems likely, though not proven yet, that this result can be extended
to TDP.

1.5 Our construction - main ideas

Our implementation follows the general ideas of the EGL protocol mentioned
above. Recall that the EGL protocol is based on enhanced TDP (rather than
a standard TDP) because the receiver is expected to sample an element
from the permutation domain such that the inverse of this element remains
secret from its own point of view. In our construction, the receiver does
not use the sampler, but rather selects a random element in {0, 1}n and
checks whether or not the element is in the permutation domain. The main
difficulty in our construction is the fact that it is not guaranteed that one
can efficiently do the check above (i.e., check whether a given element is in
the permutation domain).

We start by implementing a very weak form of OT, where we cannot
assure that all the OT requirements (i.e., the privacy of i and σ1−i, and
the correct computation of σi) hold, but we can guarantee that they hold
with a noticeable probability. The implementation main idea is that the
sender helps the receiver to check whether or not a given element is in the
permutation domain, this help is done without delivering to the receiver

“too much” information about the pre-image of the element.
Our implementation of a full-fledged OT follows by amplifying the above

“weak OT”. We note that few amplifications of information theoretic weak
forms of OT (i.e., the OT privacy requirements measure leak of information)
are known (e.g., [CK90, DKS99]), but we are not aware of amplifications
of computational knowledge weak forms of OT (i.e., at least one of the OT
privacy requirements measures leak of computational knowledge), such as
our. Therefore, the amplification part of this thesis may be of independent
interest.

1.6 The organization of the rest of the thesis

In Section 2, we give a high level overview of our implementation. Section 3
is where we give the exact definitions of the tools and terms we use in this
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thesis. In Section 4 we present the high level design (the roadmap) of our
construction. In Section 5 we give the full implementation of a weak form
OT based on dense-TDP, and in Sections 6-8 we show how to amplify such
a “weak-OT” into a full-fledged one.

2 Overview of our construction

We present a polynomial time implementation of OT (oblivious transfer)
based on the existence of dense-TDP (collection of trapdoor permutations).
Our implementation follows the general ideas of the following OT protocol
[EGL85].

2.1 The EGL OT protocol

Let (I,D, F ) be a TDP, where I is the permutation sampler algorithm, D is
the domain sampler algorithm and F and F−1 are the evaluation and invert-
ing algorithms respectively (for details see Subsection 3.6). The protocol’s
inputs are: the sender’s secrets, σ0 and σ1, the receiver’s index, i and the
security-parameter, n, given in unary.

1. The sender uniformly selects a permutation description, α, along with
its trapdoor, t, by letting (α, t) ← I(1n).

The sender sends (only) α to the receiver.

2. The receiver uniformly selects two elements, r0 and r1, in Dα, as
follows: r1−i is selected directly in Dα, using the domain sampler algo-
rithm, D. In order to select ri, the receiver first selects an element,
s, in Dα (using the sampler) and then sets ri to fα(s).

Hence, the receiver knows the pre-image of ri (i.e., s), but does not
know the pre-image of r1−i. Note that since fα is a permutation, both
r0 and r1 have the same distribution and thus, knowing them gives no
information about i.

The receiver sends (r0, r1) to the sender.

3. For both j = 0, 1, the sender computes cj = σj ⊕ b(f−1
α (rj)), where b

is a hardcore predicate for fα. Recall that knowing the trapdoor t, the
sender can invert fα.
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The sender sends (c0, c1) to the receiver.

4. The receiver locally outputs ci⊕b(s) (and as ci⊕b(s) = ci⊕b(f−1
α (ri)) =

σi, it outputs σi).

Note that since the receiver does not know the value of f−1
α (r1−i), it

received no knowledge about σ1−i.

The security of the above protocol relies on the fact that the receiver

does not know the pre-image of r1−i, even though the receiver knows the
random coins used by the sampler to select r1−i. Therefore, the above pro-
tocol requires that the TDP be an enhanced one.

2.2 Towards the protocol

We say that a given TDP has the “checkable-domains” property, if there
is an efficient algorithm that checks whether an element is inside a given
permutation domain (clearly, a given TDP might not have this property). We
start by showing how to implement an OT based on dense-TDP (recall that

a dense-TDP is a TDP whose permutations’ domains are dense in {0, 1}k(n)

for some fixed positive polynomial k) having the checkable-domains property
(hereafter referred to as c.d.d-TDP), and then step-by-step, show how to
implement an OT using a standard dense-TDP. 3

2.2.1 An OT based on c.d.d-TDP

We assume, without lost of generality, that the TDP permutations’ domains
are dense in {0, 1}n, rather than in {0, 1}k(n). (A general construction for
any fixed positive polynomial k is essentially the same).

The protocol follows the same lines as the EGL protocol (described in
Subsection 2.1), except for Step 2 that has the following form:
2. The receiver selects s, ri and r1−i as follows:

a. s and r1−i are chosen uniformly in {0, 1}n.

3We remark that any c.d.d-TDP can be transformed into a TDP whose permutations’
domains are simply {0, 1}l(n) for some fixed polynomial l. Hence, implementing OT can be
achieve using the latter TDP with the standard [EGL85] protocol. We give the following
implementation as we believe that it gives some intuition about the following steps.
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b. The receiver checks whether both s and r1−i are in Dα. If the answer
is negative, the receiver restarts the protocol (the two parties go back
to the first step of the protocol).

c. ri is set to fα(s).

It is easy to see that the above construction is indeed an implementation
of OT 4. We stress that since the receiver did not use the collection sampler
to selects r1−i, the resulting protocol is secure even if the collection is not
enhanced.

Our next step is to implement a dense-TDP based OT with a weaker
property than the checkable-domains one. We call a given TDP a “trapdoor-
c.d.d-TDP”, if there is an efficient algorithm that given the permutation
trapdoor checks whether a given element in {0, 1}n is inside the permutation
domain. We do not construct an OT based on trapdoor-c.d.d-TDP directly,
but rather construct some weak form of OT. We shall later show how this
weak form of OT can be amplified into a full-fledged OT.

2.2.2 A weak OT based on trapdoor-c.d.d-TDP

The first idea is to try and use a similar protocol to the one in Subsection
2.2.1, where in order to decide whether or not s and r1−i are in Dα, the
receiver sends both elements to the sender in a random order, and the
sender (using the trapdoor) does the check and returns the answer to the
receiver. If the sender’s answer is positive, then the receiver sends fα(s)
and r1−i to the sender and the protocol proceeds as in Subsection 2.2.1,
otherwise the receiver restarts the protocol. It is easy to see, however, that
this protocol leaks the value of i to the sender (because the sender gets
both s and ri = fα(s))).

A better idea is for the receiver to send the sender fα(s) 5 and r1−i

(instead of s and r1−i) in a random order and the sender answers whether

4There is a subtle point regarding the running time of the above protocol, which is not
even guaranteed to stop. Due to the density property of the collection, however, this issue
can be easily solved.

5By fα(x) (resp. f−1
α (x)), where x is not guaranteed to be in Dα, we mean the result

of invoking the collection evaluating algorithm, F (resp. F−1), with inputs α and x (resp.
α, x and t, where t is the trapdoor key of fα). We stress that under this notation f−1

α (x) is
a single element in {0, 1}n (i.e., F−1(α, t, x)) and not all the pre-images of x with respect
to fα.
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or not both elements are in Dα. Only if the sender’s answer is positive, the
receiver reveals the right order of fα(s) and r1−i, and the protocol proceeds
as in Subsection 2.2.1. At first glance it seems as thought we have a solution;
unfortunately this is not the case, as it turns out that not only information
about i might leak, but also the receiver might miscalculate the value of
σi. The problem is that even if fα(s) is in Dα, we are not guaranteed that
s is. The reason is that fα, when extended to {0, 1}n, is not necessarily a
permutation and therefore s might be outside Dα even if fα(s) is in Dα.
Therefore the receiver might miscalculate the value of σi. Moreover, as
fα is not a permutation on {0, 1}n, the values fα(s) and r1−i might have
a different distribution and hence, by revealing them to the sender, some
information about i might leak.

Fortunately, there is a way to overcome the problems above, or more ac-
curately to ensure that the constructed protocol is some weak form of OT.
(By a weak form of OT, we mean that even though we cannot assure that
all the required properties of OT hold, we can guarantee that they hold
with a noticeable probability). The solution is that in addition to checking
whether both elements (i.e., fα(s) and r1−i) are in Dα, the sender sends to
the receiver some random information about the pre-images (with respect
to fα) of the two elements. The receiver checks whether the information
it received about the pre-image of fα(s) is consistent with s. If the answer
is negative (or if r0 or r1 is not in Dα) it restarts the protocol. By keep-
ing the amount of information the sender sends about pre-images small,
we guarantee that only small amount of information about f−1

α (r1−i) (and
therefore about σ1−i) has leaked to the receiver. On the other hand, even
though the amount of information is limited, we can guarantee with suffi-
ciently high probability (which depends on the amount of information sent
and the density of the collection) that the chosen s is equal to f−1

α (ri). Hence,
the protocol is a weak form of OT where all the required properties hold with
noticeable probability.

In our implementation the random information that the sender sends to
the receiver about the pre-images of r0 and r1 is the output of applying
a randomly chosen pairwise independent hash function on the pre-images.
The way we choose the parameters guarantees that only a small amount of
information (polylog(n) bits of information, where n is the security-parameter
of the protocol) about the pre-images leaks to the receiver.

We are now ready to construct a “very” weak form of OT (even weaker
than the above) based on dense-TDP (without any other assumptions).
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2.2.3 A “very” weak OT based on any dense-TDP

The idea is that any dense-TDP can be extended into a trapdoor-c.d.d-
TDP. The construction of the extended collection is as follows. For each
permutation fα with domain Dα of the original collection, the extended
collection has the permutation f ′α with domain D′

α. Where Dα ⊆ D′
α

def
=

{x ∈ {0, 1}n |F (α, F−1(α, t, x)) = x} and f ′α is defined to be the natural ex-

tension of fα to D′
α, that is f ′α(x)

def
= F (α, x).

By the density property of the collection we have that for any given
permutation α, |Dα|

|D′α| is noticeable (since |Dα|
2n is noticeable), yet it may not be

negligible close to 1 and so the extended collection’s permutations are weak
one-way permutations (rather then strong one-way). Hence, the extended
collection is a dense-weak-TDP. Moreover, given an element x in {0, 1}n and
a permutation trapdoor, one can easily check whether x is in the extended
(permutation) domain by checking whether or not fα((f−1

α (x)) is equal to x.
By using the protocol of Subsection 2.2.2 with the above dense-weak-TDP

as the underlying collection, we construct some weak form of OT. This form
of OT is even weaker than the one achieved in Subsection 2.2.2 because the
collection’s permutations are only weak one-way, and hence, some informa-
tion about σ1−i might leak to the receiver through the run of the protocol.
Nevertheless, this weaker form can still be amplified into a full-fledged OT.

2.2.4 The amplification step

The amplification of the above “very” weak OT into a full-fledged OT, is
done in three consecutive steps. In each step we amplify a different property
of the protocol. Hence, after the third step we have a full-fledged OT. The
different parts of the amplification step are described through Sections 6 - 8.

3 Definitions

3.1 The semi-honest model

Loosely speaking, a semi-honest party (also known as an honest-but-curious
party) is one that follows the protocol properly with the exception that it
keeps a record of all its intermediate computations. In the semi-honest model
all parties are assumed to be semi-honest. As far as the implementation of
cryptographic protocol is concerned, one can limit oneself to the semi-honest
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model. The reason is that in [GMW87] it is shown that semi-honest model
protocols can be compiled into protocol for the general (malicious) model,
in which nothing is assumed regarding the parties. (For details see [Gol02]).
Having the above, we focus in this thesis on implementing OT in the semi-
honest model.

3.2 The security-parameter of the protocol

The security-parameter of the protocol, denoted n, is given to the protocol
in unary. Its purpose is to relate the time complexity of the protocol with
its security features in the following way:

1. Determine the security quality of the protocol. The security features
of the protocol are defined as functions of n.

2. Determine the time complexity of the protocol.

3.3 General notations

• negligible - We say that a function µ : N → [0, 1] is negligible in n
(neg(n)), if for every positive polynomial p and all sufficiently large
n’s, it holds that µ(n) < 1

p(n)
.

• noticeable- We say that a function µ : N → [0, 1] is noticeable in n, if
there exists a positive polynomial p such that for every n > 0, it holds
that µ(n) > 1

p(n)
.

3.4 Oblivious transfer (OT)

Informally, a (one-out-of-two) Oblivious transfer is a two-party protocol, in
which one party (the sender) holds two secrets (σ0 and σ1) and the other
party (the receiver) holds a secret bit i. At the end of the protocol, the
receiver learns σi. In addition, the sender gains no knowledge about i
and the receiver gains no knowledge about σ1−i. In this thesis, we limit
ourselves to OT whose secrets are one bit long. Implementing this limited
version suffices, as by successive use of one bit protocol we construct the
non-limited version. Let us turn to the formal definition.

A (one-out-of-two) OT is a two-party protocol, it has three inputs: the
sender’s secrets, σ0 and σ1 in {0, 1}, and the receiver’s index, i in {0, 1}. In
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addition, the protocol receives, as an input, its security-parameter, n, given
in unary. The OT has the following properties:

1. Correctness: The receiver almost always learns σi. That is, the
receiver learns σi with probability at least 1 − neg(n), where the
probability is over both parties’ internal coin tosses.

2. Sender’s privacy: The receiver gains no computational knowledge
about σ1−i. More formally, let V IEWR(σi, σ1−i, i) be the random vari-
able defined from the receiver’s view of the protocol where σi and
σ1−i are the sender’s input and i is the receiver’s input 6. Then for
any probabilistic polynomial time algorithm M and for any choices of
σi and i,

|Pr[M(V IEWR(σi, 1, i)) = 1]−Pr[M(V IEWR(σi, 0, i)) = 1]| = neg(n)

where the probability is over both parties’ internal coin tosses.

3. Receiver’s privacy: The sender gains no computational knowledge
about i. More formally, let V IEWS(σ0, σ1, i) be the random variable
defined from the sender’s view of the protocol where σ0 and σ1 are
the sender’s input and i is the receiver’s input. Then for any prob-
abilistic polynomial time algorithm M and for any choices of σ0 and
σ1,

|Pr[M(V IEWS(σ0, σ1, 1)) = 1]−Pr[M(V IEWS(σ0, σ1, 0)) = 1]| = neg(n)

3.5 Weak OT: (ε1, ε2, ε3)−WOT

Weak OT, parameterized as (ε1, ε2, ε3)−WOT , is a two-party protocol that
serves as an intermediate step in our implementation of OT. For ε1, ε2, ε3 ≥ 0,
(ε1, ε2, ε3)−WOT is the following relaxed version of OT. Whereas in OT
it is required that no knowledge except for the required secret may leak
from one party to the other, in (ε1, ε2, ε3)−WOT some amount of knowledge
might leak (ε2 is the amount of knowledge that might leak from the sender

to the receiver and ε3 is the amount of knowledge that might leak from

6The above notation is somewhat misused, as the order of the parameters depends on
their values. Nevertheless, the underlying notation is clear, and it is done for the sake of
simplicity.
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the receiver to the sender). Furthermore, even the value of the required
secret is not guaranteed to pass correctly (it is only guaranteed to pass with
probability 1− ε1). Thus the ε’s measure the weaknesses of the protocol and
the smaller they are the better the protocol is. Let us turn to the formal
definition.

(ε1, ε2, ε3)−WOT is a two-party protocol that has three inputs: the
sender’s secrets, σ0 and σ1 in {0, 1}, and the receiver’s index, i in {0, 1}. In
addition, the protocol receives, as an input, its security-parameter, n, given
in unary. We usually omit the security-parameter from the protocol’s input
parameters list. (ε1, ε2, ε3)−WOT has the following properties:

1. Correctness: The receiver learns σi with probability at least 1 − ε1

(rather than 1 as in OT), where the probability is over both parties’
internal coin tosses.

2. Sender’s privacy: The computational knowledge the receiver gains
about σ1−i is at most ε2 (rather than negligible). More formally, for
any probabilistic polynomial time algorithm M , for any choices of σi, i
and large enough n,

|Pr[M(V IEWR(σi, 1, i)) = 1]− Pr[M(V IEWR(σi, 0, i)) = 1]| ≤ ε2

where V IEWR is defined in Subsection 3.4 and the probability is over
both parties’ internal coin tosses.

3. Receiver’s privacy: The information the sender gain about i is at
most ε3 (rather than negligible). More formally, for any choices of σ0

and σ1 and large enough n,

stat(V IEWS(σ0, σ1, 1), V IEWS(σ0, σ1, 0)) ≤ ε3

where V IEWS is defined in Subsection 3.4 and stat stands for the
statistical difference.

Note that in the above definition, the third parameter (Receiver’s pri-
vacy) measures information rather than computational knowledge. This
strengthening simplifies our construction, as information theoretic reductions
are much simpler than computational knowledge reductions.

11



3.6 Collection of trapdoor permutations (TDP)

Collection of trapdoor permutations (TDP) is a special case of collection
of one-way permutations (OWP). Informally, a collection of permutations is
one-way if a permutation chosen from this collection is easy to compute on
any input, but hard to invert on the average. Any collection of OWP provides
two auxiliary efficient algorithms (in addition to the evaluation algorithm):
The permutation sampler algorithm that samples a random permutation in
the collection and the domain sampler algorithm that generates a random
element in the domain of a given permutation. We stress that the permu-
tation domains might be arbitrary, as long as there is an efficient domain
sampler that generates a random element in them. Such a collection is called
TDP, if in addition the permutation sampler algorithm produces a trapdoor
information that allows its holder to invert the permutation. Let us turn to
the formal definition.

Definition: Collection of trapdoor permutations (uniform complexity ver-

sion) [Gol01]: Let I ⊆ {0, 1}∗ and In
def
= I ∩{0, 1}n. A collection of permuta-

tions with indices in I is a set {fi : Di → Di}i∈I such that each fi is one-to-
one on the corresponding Di. Such a collection is called a trapdoor permuta-
tion is there exist four probabilistic polynomial-time algorithms I, D, F, F−1

such that the following five conditions hold:

1. Permutation sampler: Pr[I(1n) ∈ In × {0, 1}∗] > 1− 2−n.

That is, I is used to generate a random permutation along with its
trapdoor.

2. Selection in domain: for every n ∈ N and i ∈ In

(a) Pr[D(i) ∈ Di] > 1− 2−n.

(b) Conditioned on D(i) ∈ Di, the output is uniformly distributed
in Di. Thus Di ⊆ ∪m≤poly(|i|) {0, 1}m. Actually, with out lost of

generality, Di ⊆ {0, 1}poly(|i|).

That is, given a permutation, D is used to generate a random element
in the permutation domain.

3. Efficient evaluation: for every n ∈ N, i ∈ In and x ∈ Di, P r[F (i, x) =
fi(x)] > 1− 2−n.

12



That is, given a permutation fi, algorithm F is used to evaluate the
permutation on any element in its domain.

4. Hard to invert: let In be the random variable describing the distribution
of the first element in the output of I(1n) and Xn

def
= D(In), then for any

probabilistic polynomial time algorithm M , every positive polynomial
p, and large enough n, Pr[M(In, fIn(Xn)) = Xn] < 1

p(n)
.

5. Inverting with trapdoor, for every n ∈ N any pair (i, t) in the range of
I(1n) such that i ∈ In, and every x ∈ Di, Pr[F−1(i, t, fi(x)) = x] >
1− 2−n.

That is, given a permutation along with its trapdoor, F−1 is used to
find the pre-image of any element in its domain.

In this thesis we use an alternative, though equivalent, version of the
fourth condition, where we replace (the random variable) Xn of conditioned
4, by the equivalent random variable f−1

In
(Xn). Hence we have the following

condition:
4′. P r[M(In, Xn) = f−1

In
(Xn)] < 1

p(n)
.

3.7 Enhanced collection of trapdoor permutations

The implementation of OT presented by [EGL85], is based on the existence
of enhanced TDP. The enhancement refers to the hard-to-invert condition
(i.e., that it is hard to find the pre-image of a random element without
knowing the permutation trapdoor). The enhanced condition requires that
the hardness still hold even when the adversary receives, as an additional
input, the random coins used to sample the element. (For more details see
[Gol02]).

Formally, the enhanced definition has the form: Let (I, D, F ) be a TDP,
and let D be the deterministic version of the permutation sampler D, in
which the algorithm receives, as an additional input, its random coins input;
that is D(i) = D(i, r) for r uniformly distributed in {0, 1}poly(|i|). Let In be
the random variable describing the distribution of the permutation indices
in the collection. Then in the enhanced TDP, the hard-to-invert condition
has the form: For any probabilistic polynomial time algorithm M and every
positive polynomial p,

Pr[M(In, r) = f−1
In

(D(In, r))] <
1

p(n)

13



That is, the inverting algorithm M receives the random coins r rather than
only the corresponding image D(i, r).

It is presently unknown whether or not the existence of a TDP implies
the existence of an enhanced TDP.

3.8 Collection of dense trapdoor permutations (dense-
TDP)

A collection of dense trapdoor permutations (dense-TDP) is a TDP with one
additional requirement. Whereas in an arbitrary TDP, the permutations may
have arbitrary domains, here we require that these domains be polynomial
fractions of the set of all strings of a particular length. Formally, recall that
Dα is the domain of the permutation named α. The additional requirement
is that there exists a positive polynomial g such that for all n ∈ N and all
α ∈ In, Dα ⊆ {0, 1}n and |Dα| > 2n

g(n)
. We define the density parameter of the

collection, ρ, as 1
g
.

An alternative definition might allow Dα to be a subset of {0, 1}k(n), for
some fixed positive polynomial k (rather than a subset of {0, 1}n). It is easy
to see, however, that the two definitions are essentially equivalent.

4 Our implementation roadmap

Our implementation consists of four major steps. In the first step we con-
struct a very weak protocol and then step-by-step we amplify the protocol till
we achieve a full-fledged OT. Each of the amplification steps (the last three
steps), however, can be used independently in order to amplify a weak form
of OT into a stronger one. In particular, by combing the three amplification

steps together, one can amplify any
(

1
3n2t(n)

, 1− 1
t(n)

, 1
3n2t(n)

)
−WOT (where

t is any positive polynomial) into an OT. Following is a short description of
the implementation’s steps.

1. Using any dense-TDP, we construct a
(

1
q(n)

, 1− ρ(n)2

4
, 1

q(n)

)
−WOT ,

where ρ is the density parameter of the collection and q is any positive
polynomial.

In this step we implement a very weak form of (ε1, ε2, ε3)−WOT , where
all three parameters are not negligible. Notice that while the second
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parameter is fixed (equals 1− ρ(n)2

4
) and might be rather big, the first

and third parameters can be as small as we like (as long as they are
polynomial fractions). This freedom in choosing the first and third
parameters, is used in the next step in order to construct a stronger
protocol.

2. Using any
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−WOT , we construct a

(
1

q′(n)
, neg(n), 1

q′(n)

)
−

WOT , where q′ and t are any positive polynomials.

In this step, we show how to reduce (the potentially big) second pa-
rameter of the given WOT into a negligible function. Note that the
first and third parameters increase by a factor of nt(n).

In the protocol, the sender splits its original pair of secrets into many
pairs of secrets, by splitting each of the original secrets into many se-
crets using a secret sharing scheme. Then, the sender transfers the i’th

secret of each new pair to the receiver using
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−

WOT . By invoking Yao’s XOR lemma, we show that the amount of
knowledge the receiver gains about σ1−i through this protocol, is neg-
ligible.

3. Using any
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−WOT , we construct a

(
neg(n), neg(n), 1

q′′(n)

)
−

WOT , where q′′ is any positive polynomial.

In this step, we show how to reduce the first parameter into a negligible
function. Note that the third parameter increases by a factor of n.

In the protocol the sender repeatedly transfers σi to the receiver, us-

ing
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−WOT . The receiver determines the cor-

rect value using majority rule. Thus the probability that the receiver
did not get σi correctly, vanishes exponentially.

4. Using any (neg(n), neg(n), 1
3
)−WOT , we construct (neg(n), neg(n), neg(n))−

WOT .

In this final step, we reduced the third parameter into a negligible
function. The implementation of this step follows the construction
presented by Crépeau and Kilian [CK90].

Thus in order to implement OT, we do the following steps: First, we

implement, using dense-TDP, a
(

ρ(n)2

12n2 , 1− ρ(n)2

4
, ρ(n)2

12n2

)
−WOT . Next, we use

15



the latter protocol to construct
(

1
3n

, neg(n), 1
3n

)−WOT , which in turn is used
to construct

(
neg(n), neg(n), 1

3

)−WOT , which is finally used to construct
the desired (neg(n), neg(n), neg(n))−WOT .

Recall that by the definition of (ε1, ε2, ε3)−WOT , the constructed
(neg(n), neg(n), neg(n))−WOT is actually stronger protocol than OT. This
is the case since in OT all the requirements refer to computational knowledge,
whereas in (neg(n), neg(n), neg(n))−WOT the Receiver’s privacy property
is information-theoretic. (This strengthening also occurs in the EGL proto-
col).

5 Using dense-TDP to construct
(

1
q(n), 1− ρ(n)2

4 , 1
q(n)

)
−

WOT

Recall that ρ is the density parameter of the collection and q is any positive
polynomial.

In this section we implement a very weak form of (ε1, ε2, ε3)−WOT ,
where all three parameters are not negligible. Notice that while the second

parameter is fixed (equals 1 − ρ(n)2

4
) and might be rather big, the first and

third parameters can be as small as we like (as long as they are polynomial
fractions). This freedom in choosing the first and third parameters, is used
in the next section in order to construct a stronger protocol.

5.1 Preliminaries

Let (I, D, F ) be a dense-TDP with density parameter ρ. For simplicity’s
sake, we assume that the evaluation and inverting algorithms (i.e., F and
F−1) are deterministic and errorless; that is always return the right answers.
Note that in the definition of dense-TDP, all the collection’s algorithms are
probabilistic and might return wrong answers with negligible probability.
The extension of the following implementation to the general case is done in
Subsection 5.5.

We would like to evaluate F (α, ·) and F−1(α, ·) on any element in {0, 1}n

(and not only on elements in Dα). The problem is that nothing is guaranteed
about the computation of F (α, x) and F−1(α, x) when x is not in Dα. We
can assume, however, that this computation halts in polynomial time and
without lost of generality returns some value in {0, 1}n. Therefore we extend
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the notations fα(x) and f−1
α (x) to denote, for all x ∈ {0, 1}n, the value of

F (α, x) and F−1(α, x) respectively. Note that under the extended notation fα

is no longer guaranteed to be a permutation. We stress, however, that under
this notation f−1

α (x) denotes a single element in {0, 1}n (i.e., F−1(α, t, x))
and not all the pre-images of x with respect to fα.

5.2 The protocol’s outline

Our protocol is an extension of the EGL protocol (described in Subsection
2.1). The first part of the protocol (Steps 1-3) is similar to the first part
(Steps 1-2) of the EGL protocol. In this part, the receiver selects r1−i and
s uniformly in {0, 1}n. (We stress that unlike in the EGL protocol, here the
domain sampler algorithm (D) is not used at all). Note that either r1−i or s
might not be in Dα.
The middle part of the protocol (Steps 4-5) is where the new key idea lies.
The sender helps the receiver to decide whether or not r0 and r1 (that the
receiver has chosen in the first part of the protocol) “look” as though they
have been chosen from the same distribution. In addition, the sender helps
the receiver to decide whether or not s is equal to f−1

α (ri). The above help
is given to the receiver without leaking “too much” information about the
value of r1−i (and hence about the value of σ1−i). This help is needed, as there
is no efficient way to the receiver to tell whether or not a given element is
in Dα. If the receiver concludes that r0 and r1 “look” as though they have
been chosen from different distributions, or that s is not equal to f−1

α (ri),
then it restarts the protocol. Hence, the protocol might iterate through its
first two parts (Steps 1-5) for quite a while, before it finally reaches its last
part (Steps 6-8). It is guaranteed, however, that with very high probability,
the protocol halts after a polynomial number of iterations.
The last part of our protocol is similar to the last part (Steps 3-4) of the EGL
protocol. The receiver uses the information it received from the sender to
calculate σi.

5.3 The protocol itself

The protocol uses a collection of pairwise independent hash functions de-
noted Hn, where the hash function domain is {0, 1}n and their range is{

1, 2, . . . , q(n)
ρ(n)2

}
. That is, for any n, for any x 6= y ∈ {0, 1}n and for any
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β, γ ∈
{

1, 2, . . . , q(n)
ρ(n)2

}
, Prh∈RHn [(h(x) = β) ∧ (h(y) = γ)] =

(
q(n)
ρ(n)2

)−2

.

Recall that the protocol’s inputs are: the sender’s secrets, σ0 and σ1,
and the receiver’s index, i.

1. The sender uniformly selects a permutation and its trapdoor, α and t,
by letting (α, t) ← I(1n), and uniformly selects a hash function h ∈ Hn.

The sender sends (h, α) to the receiver.

2. The receiver selects s, ri and r1−i as follows:

• s is chosen uniformly in {0, 1}n and ri is set to fα(s).

• r1−i is chosen uniformly in {0, 1}n.

The idea is that when s is in Dα, the receiver knows the value of
f−1

α (ri) (i.e., s), and when r1−i is in Dα, it does not know the value of
f−1

α (r1−i). Moreover, when both s and r1−i are in Dα, they have the
same distribution (as fα is a permutation on Dα) and thus, knowing
them gives no knowledge about i. Note that, if r1−i or s are not in Dα

then the protocol is not guaranteed to work correctly. However, in case
that the protocol is not working correctly, the protocol detects it, with
sufficiently high probability, by itself in Steps 4 - 5 and restarts.

3. The receiver sends (r0, r1) to the sender in a random order, i.e., the
receiver selects k uniformly in {0, 1}, sets w0 to rk and w1 to r1−k,
and sends (w0, w1) to the sender.

By sending r0 and r1 in a random order, the receiver hides the iden-
tity of i. The random order is needed, since r0 and r1 might have
completely different distributions and thus, sending them in a fixed
order might leak information about i. This random ordering step was
not taken in the EGL protocol, as in the EGL protocol both r0 and r1

were guaranteed to have the same distribution (recall that they were
uniformly chosen in Dα). In the current protocol, however, it is not
always the case. The reason is that in order to select ri we evaluate
fα(s), even though s is not guaranteed to be in Dα. Hence, we can
assure nothing about ri’s distribution. For example, it might be that
for all x not in Dα, the value of fα(x) is equal to 0n and hence with
high probability (i.e., 1 − ρ(n)) ri = 0n. Indeed in such a case and if
r0 and r1 would have been sent in a fixed order, the receiver could
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guess the value of i by checking whether or not (for j = 0, 1) rj = 0n

(note that r1−i is uniformly distributed in {0, 1}n).

4. For both j = 0, 1, the sender checks whether or not fα(f−1
α (wj)) = wj.

If both answers are positive it sets vj to h(f−1
α (wj)), otherwise it aborts

the current iteration (i.e., the protocol is restarted).

The sender sends (v0, v1) to the receiver.

That is, the sender does not abort the current iteration, only if both
r0 and r1 are in D′

α
def
= {x ∈ {0, 1}n |fα((f−1

α (x)) = x}. If the current
iteration is not aborted, some random information about f−1

α (r0) and
f−1

α (r1) is delivered to the receiver. The amount of this information,
however, is small and thus does not enable the receiver to compute
f−1

α (r1−i).

5. The receiver aborts the current iteration if vi⊕k 6= h(s).

Motivation: The goal of the last two steps is to ensure, with sufficiently
high probability, that the following two requirements hold: The first
requirement is that s = f−1

α (ri) and the second requirement is that
ri and r1−i “look” as though they have been chosen from the same
distribution. By Step 4 we are guaranteed that both r0 and r1 are in
D′

α. Therefore, we are guaranteed that r1−i is uniformly distributed in
D′

α (as r1−i was uniformly chosen in {0, 1}n). We are not guaranteed,
however, that this is the case with r1−i. The probability that the value
of ri is equal to a given element in D′

α, is determined by the number
of pre-images (with respect to fα) of this element in {0, 1}n and this
number might not be the same for different elements in D′

α (e.g., it
might be the case that for all x not in D′

α, the value of fα(x) = c,
where c is a fixed element in D′

α). We are guaranteed, however, that
conditioned on fα(ri) = s, ri is uniformly distributed in D′

α (by a
similar argument to the one we gave about the distribution of r1−i).
The crucial observation is that when both s and r1−i happen to be in
Dα (which happens with probability at least ρ(n)2), then fα(ri) = s and
hence the above two requirements are guaranteed to hold. Moreover,
in such a case the current iteration is not aborted. On the other hand,
when one of the above two requirements does not hold then the current
iteration is aborted with high probability (i.e., at least 1− 1

q(n)
).

6. The receiver sends k to the sender.
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That is, the receiver tells the sender which of the values, w0 and w1,
is r0 and which is r1. The point is that when we reach this step, r0 and
r1 have, with substantial probability, the same distribution. Hence,
only a small amount of information about i might leak to the sender.

7. For both j = 0, 1, the sender uniformly selects yj ∈ {0, 1}n and sets

cj to b(f−1
α (rj), yj)⊕ σj, where b(x, y)

def
=<x, y> mod 2 (i.e., the inner

product of x and y modulus 2).

The sender sends (c0, c1, y0, y1) to the receiver.

Note that in this protocol, the sender XORs σ0 and σ1 with the hard-
core bits of (r0, y0) and (r1, y1). The latter hardcore bits are with
respect to a specific hardcore predicate (i.e., b) of the trapdoor per-

mutation gα, defined as gα(x, y)
def
= (fα(x), y). In contrast, in the EGL

protocol the sender XORs σ0 and σ1 with the hardcore bits of r0 and
r1, with respect to any given hardcore predicate of fα. The reason for
this modification is that we want to ensure that knowing h(f−1

α (r1−i))
does not give any meaningful knowledge about c1−i (and hence about
σ1−i), a claim with seems harder to prove with respect to the original
definition of the c’s.

8. The receiver locally outputs b(s, yi)⊕ ci.

Note that when f−1
α (ri) = s, the receiver outputs σi. In addition,

when r1−i is in Dα, no knowledge about σ1−i leaks to the receiver.

5.4 Analysis

In the following analysis we refers to the above protocol as the protocol.
We start by proving that the protocol’s running time is polynomial, and

then we prove that the protocol is a
(

1
q(n)

, 1− ρ(n)2

4
, 1

q(n)

)
−WOT . The latter is

done by first proving the Correctness and the Receiver’s privacy properties
of the protocol, by analyzing the probability that the protocol ends in a
certain way that guarantees the above properties. Then we, separately, prove
the Sender’s privacy property.
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5.4.1 The running time of the protocol

By the density property of the collection we have that each iteration has
probability of at least ρ(n)2 to be the last one (because when both s and
r1−i are in Dα, the protocol is guaranteed to halt). Therefore, with very high
probability, the protocol halts after n

ρ(n)2
iterations. Moreover, the protocol

can be extended such that it always halts after n
ρ(n)2

iterations. This mod-
ification can be ignored while analyzing the protocol, as it only effects the
protocol behavior with negligible probability.

5.4.2 The chances for a “good-ending”

Note that the part of the protocol prior to its last iteration does not leak any
information to the sender or the receiver, because this part (which contains
the iterations that were aborted before Step 6) is, essentially, independent
of σ0, σ1 and i. Having the above, we focus in analyzing the protocol’s last
iteration.

We say that the protocol had a good-ending, if in its last iteration s =
f−1

α (ri), otherwise we say that the protocol had a bad-ending. The proof of
the protocol’s Correctness and Receiver’s privacy properties stems from the
following claim about the probability that the protocol had a good-ending.

Claim 5.4.1 The probability over the random coins used by the protocol that
the protocol had a good-ending is at least 1− 1

q(n)
.

Proof: Let’s say that the protocol had a t-good-ending if the protocol had
exactly t iterations and a good-ending. Similarly, we define the notation
of t-bad-ending. Let’s denote by γ the conditional probability of having t-
good-ending given that the protocol had at least t iterations. Note that, by
the protocol structure, γ is indeed independent of t. In the same manner we
denote by β the conditional probability of having t-bad-ending given that the
protocol had at least t iterations (note that β is independent of t as well).
(We note that clearly β + γ ≤ 1 and when the protocol is not guaranteed to
have only one iteration, we have that β + γ < 1).

Using the above notation we are ready to analyze the probability for a
bad-ending. If the protocol had a bad-ending, then there exists a positive
t such that the protocol had a t-bad-ending and for any j smaller than t
the protocol did not end, and in particular did not have a j-good-ending.
Therefore the probability that the protocol had a bad-ending is smaller than∑

t≥0(1− γ)tβ = β
γ
.
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By the density property of the collection we have that γ ≥ ρ2(n) (as if in
the t iteration, both s and r1−i are in Dα, then the protocol is guaranteed to
have t-good-ending).

In order to have a t-bad-ending (conditioned on the protocol had at least
t iterations), it should be the case that in the t’th iteration s 6= f−1

α (ri)
but still both s and f−1

α (ri) have the same hash-value, with respect to the
uniformly chosen pairwise hash function. As the range of the pairwise hash
function we use in the protocol is q(n)

ρ(n)2
, we have that the probability to have

a t-bad-ending is bounded above by ρ(n)2

q(n)
. Therefore the probability of a

bad-ending is not more than

(
ρ(n)2

q(n)

)

ρ(n)2
= 1

q(n)
.

Having established the above claim we can prove the protocol’s Correct-
ness and Receiver’s privacy properties.

5.4.3 Proving the Correctness property - The receiver outputs σi

with probability at least 1− 1
q(n)

If the protocol had a good-ending (and therefore s = f−1
α (ri)), then the bit

the receiver computes as the hardcore bit of (ri, yi) (i.e., b(s, yi)) is the
right one. Therefore, if the protocol had a good-ending, then the receiver

outputs σi, and by Claim 5.4.1, it happens with probability at least 1− 1
q(n)

.

5.4.4 Proving the Receiver’s privacy property - The sender does
not gain more information about i than 1

q(n)

The crucial observation is that given that the protocol had a good-ending,
V IEWS(σ0, σ1, 0) and that V IEWS(σ0, σ1, 1) have exactly the same distri-
bution. To prove the above, let’s recall the definition of the set D′

α (i.e.,
D′

α = {x ∈ {0, 1}n |fα(f−1
α (x)) = x}). As the last iteration was not aborted,

we have that r1−i is uniformly distributed in D′
α. The latter is true as r1−i

was uniformly chosen in {0, 1}n, and due to Step 4 it holds that r1−i is in
D′

α. Given that the protocol had a good-ending (and thus s = f−1
α (ri)),

s is uniformly distributed in f−1
α (D′

α)
def
= {f−1

α (x)|x ∈ D′
α} (by a similar ar-

gument to the one we gave about the distribution of r1−i). Hence (as fα is
clearly one-to-one and onto D′

α), ri is uniformly distributed in D′
α. Therefore

the statistical difference between V IEWS(σ0, σ1, 1) and V IEWS(σ0, σ1, 0) is
bounded above by the probability that the protocol had a bad-ending, and
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therefore by 1
q(n)

.

5.4.5 Proving the Sender’s privacy property - The receiver does
not gain more computational knowledge about σ1−i than 1−
ρ(n)2

4

Recall that the above condition states that the receiver has at least ρ(n)2

4

uncertainty regarding the value of σ1−i. We show that it is impossible for
the receiver to gain more computational knowledge about σ1−i than the
above limit. Intuitively, if the receiver does gain more knowledge, then it
has to be “significantly” successful doing so, in the specific case when in the
last iteration both s and r1−i are in Dα. The reason is that by the density
property of the collection, the probability that in the last iteration, both s
and r1−i happen to be in Dα, is at least ρ(n)2. Hence, if the receiver gains

more computational knowledge about σ1−i than 1− ρ(n)2

4
, then the receiver

gains at least 3
4

computational knowledge about σ1−i, conditioned on both s
and r1−i being in Dα. Gaining such a knowledge about σ1−i under the latter
conditioning is impossible, as it leads to inverting the collection of one-way
permutations itself.

We remark that gaining 1 − ρ(n) computational knowledge about σ1−i

might be easy. For example, it might be the case that outside Dα, the
function fα is easy to invert (e.g., fα might be the identity function for any
x not in Dα) and the probability that r1−i is not in Dα might be as high as
1− ρ(n). Hence, one could succeed in computing f−1

α (r1−i) with probability
1− ρ(n) and thus could compute σ1−i with probability 1− ρ(n). Recall that

we claimed that computing σ1−i with probability greater than 1− ρ(n)2

4
, is at

least as hard as inverting the collection itself and therefore impossible. Thus
there is a gap between the stated lower and upper bound on the amount of
computational knowledge the receiver can gain about σ1−i (their values are

1− ρ(n) and 1− ρ(n)2

4
respectively).

Let us turn to the formal proof. We assume, by contradiction, that the
above condition does not hold (i.e., the receiver does gain more computa-

tional knowledge about σ1−i than 1− ρ(n)2

4
) and construct a polynomial time

algorithm that inverts the dense-TDP with a non-negligible success. The
proof has two major steps. First we construct a polynomial time algorithm,
B, that predicts b(f−1

α (x), y) with non-negligible advantage. (Recall that
b(z, w) is the inner product of z and w mod 2 and it is a hardcore predicate
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of the trapdoor permutation gα, defined as gα(z, w)
def
= (fα(z), w)). In the

second step, we construct a polynomial time algorithm, A, that computes
,with non-negligible probability, f−1

α (x), by embedding B in the reduction
given by [GL89], which establishes that b is an hard core predicate for any
one-way function.

First step - constructing Algorithm B
We present a polynomial time algorithm B that (under the contradiction

assumption) predicts b(f−1
α (x), y) with non-negligible advantage. It has five

inputs: α, h, x, y and v. Assuming that x is uniformly distributed in Dα, y
is uniformly distributed in {0, 1}n and that its other inputs were “properly
chosen” (to be define below), B predicts the value of b(f−1

α (x), y) with non-
negligible advantage. It does so by creating a random looking receiver’s
view of the protocol, in a way that knowing the value of σ1−i yields the value
of b(f−1

α (x), y). Let us turn to the construction of B.

B(α, h, x, y, v): Recall that under the contradiction assumption there ex-
ist an algorithm M , an index i and a secret σi such that for infinitely many
n’s

|Pr[M(V IEWR(σi, 1, i)) = 1]− Pr[M(V IEWR(σi, 0, i)) = 1]| > ρ(n)2

4

Algorithm B consists on the following steps:

1. Generate V α,h,x,y,v - the emulated receiver’s view of the protocol.

Under some conditions (detailed below) the random variable V α,h,x,y,v

would have the same distribution as the receiver’s view of the proto-
col. Moreover, the generation would guarantee that knowing the value
of σ1−i in V α,h,x,y,v yields the value of b(f−1

α (x), y). The generation is
done through the following steps.

(a) Generate the first part of V α,h,x,y,v - the part prior to the last
iteration.

Recall that the receiver’s view of the protocol is a concatenating
of several (one to polynomial many) transcripts of a single itera-
tion. Also recall that, except for the last iteration, all iterations
are independent of the values of σ0 and σ1. The generation of this
part is done by simulating the protocol with the sender’s secrets
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set to one (any fixed values would do) and the receiver’s index
set to i. After the simulation ends, the last iteration is removed.

Motivation: If the receiver’s index in the protocol is i, then the
first part of V α,h,x,y,v has the same distribution as the first part of
the receiver’s view of the protocol.

(b) Generate the second part of V α,h,x,y,v - the last iteration part.

• Set the permutation and hash function of this iteration to the
inputs parameters α and h respectively.

• Choose s uniformly in Dα, yi uniformly in {0, 1}n and set ri

to fα(s), vi to h(s) and ci to b(s, yi)⊕ σi.
Motivation: If in the protocol’s last iteration the permutation
is α, the hash function is h and s is in Dα, then the val-
ues of s, yi, ri, vi and ci in V α,h,x,y,v’s last iteration, have the
same distribution as these values in (the last iteration of) the
receiver’s view of the protocol.

• Set r1−i to x, y1−i to y and v1−i to v, and select c1−i uniformly
in {0, 1}.
Motivation: If x is uniformly distributed in Dα, y is uni-
formly distributed in {0, 1}n, v = h(f−1

α (x)) and σ1−i is uni-
formly distributed in {0, 1}, then the remaining values of
V α,h,x,y,v’s last iteration (i.e., r1−i, y1−i, v1−i and c1−i) have
the same distribution as these values in (the last iteration of)
the receiver’s view of the protocol.

2. Return M(V α,h,x,y,v)⊕ c1−i as the value of b(f−1
α (x), y).

We now prove an essential claim about the probability that Algorithm B
succeeds in computing b(fα(x), y).

Claim 5.4.2 Assuming that α has the same distribution as in the protocol’s
last iteration 7, x, h and y are uniformly distributed in Dα, Hn and {0, 1}n

respectively and that v = h(f−1
α (x)), then B(α, h, x, y, v) = b(f−1

α (x), y) with
probability at least 3

4
.

7Note that this distribution might be different than uniform in In, as it is determined
by the size of the α’s domains, which might be different (up to polynomial factor) for
different values of α.
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Proof: First, let’s recall that by the contradiction assumption, we have that
for infinitely many n’s,

|Pr[M(V IEWR(σi, 1, i)) = 1]− Pr[M(V IEWR(σi, 0, i)) = 1]| > 1− ρ(n)2

4

Without loss of generality we can drop off the absolute value notation, there-
fore we have that the first item (i.e., Pr[M(V IEWR(σi, 1, i)) = 1]) is not

smaller than 1−ρ(n)2

4
and that the second item (i.e., Pr[M(V IEWR(σi, 0, i)) =

1]) is not bigger than ρ(n)2

4
. Thus we have that for both σ1−i = 0, 1

Pr[M(V IEWR(σi, σ1−i, i)) = σ1−i] > 1− ρ(n)2

4
(1)

By the density property of the collection, we have that the (a priori)
probability, over the random coins used by the protocol, that in the last
iteration both s and r1−i are in Dα, is at least ρ(n)2. Hence, by Equation 1
and a simple average argument, we have that for both σ1−i = 0, 1

Pr[M(V IEWR(σi, σ1−i, i)) = σ1−i|s, r1−i ∈ Dα] >
3

4
(2)

For a given value of V α,h,x,y,v we let τ(V α,h,x,y,v)
def
= b(f−1

α (x), y) ⊕ c1−i

(where x, y and c1−i are the values of these variables in V α,h,x,y,v). By the
construction of V α,h,x,y,v and the claim’s assumptions (i.e., α has the same
distribution as in the protocol’s last iteration, x, h and y are uniformly dis-
tributed in Dα, Hn and {0, 1}n respectively and v = h(f−1

α (x))), we have that
(V α,h,x,y,v, τ(V α,h,x,y,v)) has the same distribution as (V IEWR(σi, σ1−i, i), σ1−i)
conditioned on s and r1−i being in Dα. Hence,

Pr[M(V α,h,x,y,v) = τ(V α,h,x,y,v)] =

= Pr[M(V IEWR(σi, τ(V α,h,x,y,v), i)) = τ(V α,h,x,y,v)|s, r1−i ∈ Dα]
(3)

Now we are ready to prove the claim. By Step 2 of the algorithm and the
definition of τ we have that

Pr[B(α, h, x, y, h(x)) = b(f−1
α (x), y)]

= Pr[M(V α,h,x,y,v)⊕ c1−i = b(f−1
α (x), y)]

= Pr[M(V α,h,x,y,v) = τ(V α,h,x,y,v)]
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Therefore by the above result and Equations 2 and 3, we have proved that:

Pr[B(α, h, x, y, h(x)) = b(f−1
α (x), y)] ≥ 3

4

Second step - constructing Algorithm A
We are about to use Algorithm B, in order to construct a polynomial time

algorithm that finds, with non-negligible success, f−1
α (x). Recall that b(z, y)

is the inner product of z and y mod 2. We call a random process bz a predictor
for b(z, ·), if

Pry∈R{0,1}n [bz(y) = b(z, y)] >
1

2
+ ε

where ε is some fixed positive constant, and the probability is taken uniformly
over the internal coins tosses of bz and all possible choices of y ∈ {0, 1}n.
By [Gol99, Thm. C4] variant of the reduction used by [GL89] in proving
hard-core predicate for any one-way function 8, we have that one can use a
predictor for b(z, ·) to find, with non-negligible success, the value of z. The
following algorithm uses Algorithm B to generate a predictor for b(f−1

α (x), ·),
and then use the above reduction to compute the value of f−1

α (x). Let us
turn to the formal definition.

A(α, x):

1. Select h uniformly in Hn, and v uniformly in Rh (where Rh stands for
h range).

2. Try to generate a predictor for b(f−1
α (x), ·): Generate Pα,h,v,x, where

Pα,h,v,x is a one input algorithm, constructed from Algorithm B by
hardwiring B’s first four inputs to α, h, x and v, where α and x are the
current algorithm inputs, and h and v were chosen above.

Motivation: With non-negligible probability (to be analyzed below),
Pα,h,v,x is a predictor for b(f−1

α (x), ·)
8The variant presented in [Gol99, Thm. C4], was originally suggested by Charlie Rack-

off.
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3. Compute f−1
α (x) using the reduction given by [Gol99, Thm. C4] in

proving hard-core predicate for any one-way function, i.e., the algo-
rithm uses Pα,h,v,x as the random process used in the reduction to
compute f−1

α (x).

Lemma 5.4.3 A inverts the collection with non-negligible probability.

Proof:
The proof is an immediate result of the following claim concerning the

probability that Pα,h,v,x is a predictor for b(f−1
α (x), ·):

Claim 5.4.4 Assuming that α and x are uniformly distributed in In and Dα

respectively, then, with non-negligible probability, Pα,h,v,x is a predictor for
b(f−1

α (x), ·).

Proof: By Claim 5.4.2

Pr[B(α, h, x, y, h(f−1
α (x))) = b(f−1

α (x), y)] ≥ 3

4

where α’s distribution is as in the protocol’s last iteration, and x, h and y are
uniformly chosen from Dα, Hn and {0, 1}n respectively. Since the TDP used
by the protocol is dense, α’s distribution in the protocol’s last iteration is
polynomially related to uniform in In (i.e., there exists a positive polynomial
p, such that for any β ∈ In

1
p(n)

1
|In| ≤ Pr[α = β] ≤ p(n) 1

|In|). Therefore
by a simple averaging argument we have that for a constant fraction of the
triplets {(α, h, x)}, where α ∈ In, h ∈ Hn and x ∈ Dα, it holds that

Pry∈R{0,1}n [B(α, h, x, y, h(f−1
α (x))) = b(f−1

α (x), y)] ≥ 17

32
(4)

By Algorithm A Step 2, we have that if v = h(f−1
α (x)), then B(α, h, x, y, h(f−1

α (x))) =
Pα,h,x,v(y). Note that because v was uniformly chosen in Rh, the probability

that v = h(f−1
α (x)) is noticeable (recall that |Rh| = q(n)

ρ(n)2
). Thus, by the

above and Equation 4, the proof follows.

The lemma follows by combining Claim 5.4.4 and [Gol99, Thm. C4].
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5.5 Extending the protocol to the general version of
dense-TDP (all the collection’s algorithms might
have errors)

In the general version of dense-TDP, all the collection’s algorithms (i.e.,
I, D, F and F−1) are probabilistic and might, though with negligible prob-
ability, have errors. Recall that in the above construction we assumed that
F and F−1 are deterministic and errorless. We would like now to present
a slightly different version of the previous protocol that is based on general

version of dense-TDP and is still a
(

1
q(n)

, 1− ρ(n)2

4
, 1

q(n)

)
−WOT .

Let F and F
−1

be the deterministic versions of the F and F−1 that receive
their random coins as an additional input. The modified version of Protocol
5.3 has the following modifications: In the first line of the protocol (Step
1) the sender selects, in addition to its other choices, two random strings
z1, z2 and sends z1 to the receiver. Whenever each of the parities evaluates
F (α, x) or F−1(α, x, t), (where t is the trapdoor of α) it does so by evaluating

F (α, x, z1) or F
−1

(α, x, t, z2) respectively.
In the analysis of the original protocol we implicitly assumed that for any

x in Dα, F (α, x) and F−1(α, x, t) always return fα(x) and f−1
α (x) respectively.

In the above modified version of the protocol these assumption are only
guaranteed to hold with very high probability (i.e., 1 − 2−n). Nevertheless,
the same proof of correctness may be used to prove that the modified version

is still a
(

1
q(n)

, 1− ρ(n)2

4
, 1

q(n)

)
−WOT .

6 Using
(

1
nq′(n)t(n), 1− 1

t(n),
1

nq′(n)t(n)

)
−WOT to con-

struct
(

1
q′(n), neg(n), 1

q′(n)

)
−WOT

Recall that q′ and t are any positive polynomials.
In the following protocol, the sender splits its original pair of secrets

into many pairs of secrets, by splitting each of the original secrets into many
secrets (i.e., nt(n)) using a secret sharing scheme. Then, the sender transfers

the i’th secret of each new pair to the receiver using
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−

WOT . The point is that in order to know the value of σj, one “should know”
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the j secret of each of the new pairs. Thus, the amount of knowledge the
receiver gains about σ1−i in the following protocol is negligible.

6.1 The protocol

Recall that the protocol’s inputs are: the sender’s secrets, σ0 and σ1, and
the receiver’s index, i.

1. For both k = 0, 1, the sender sets the following values:

• ωk,1, . . . , ωk,nt(n)−1 are uniformly chosen at {0, 1}.
• ωk,nt(n) is set to (

⊕nt(n)−1
j=1 ωk,j)⊕ σk.

Motivation: The sender splits each of its original secrets into nt(n)

shares called ω’s such that
⊕nt(n)

j=1 ωk,j = σk. Thus, in order to know σk

one should know ωk,1, . . . , ωk,nt(n).

2. For all 1 ≤ j ≤ nt(n), the sender transfers ωi,j to the receiver, using(
1

nq′(n)t(n)
, 1− 1

t(n)
, 1

nq′(n)t(n)

)
−WOT .

That is, the parties invoke
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−WOT for nt(n)

times such that in the j’th invoking the sender’s secrets are ω0,j and
ω1,j and the receiver’s index is i.

3. The receiver locally outputs
⊕nt(n)

j=1 ωi,j.

6.2 Analysis

In the following analysis we refer to the above protocol as the high-level pro-

tocol, and we refer to
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−WOT as the subprotocol.

6.2.1 Proving the Correctness property - The receiver outputs σi

with probability greater than 1− 1
q′(n)

By the Correctness property of the subprotocol, for every j the receiver

obtain (in the high-level protocol) the value of ωj,i with probability at least
1− 1

nq′(n)t(n)
. Therefore, by union bound, the probability that the receiver

obtains values of all ωj,i correctly (and hence, outputs σi), is at least 1 −
nt(n) · 1

nq′(n)t(n)
= 1− 1

q′(n)
.
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6.2.2 Proving the Sender’s privacy property - The receiver gains
no computational knowledge about σ1−i

The current setting is analogous to Yao’s XOR-lemma. Recall that Yao’s
XOR-lemma states that given a basic predicate that is “not too easy to pre-
dict” (i.e., each polynomial time algorithm may predict the predicate value
with probability bounded away from 1), the predicate defined as the XOR
of “many” invocations of the basic predicate is unpredictable (i.e., no poly-
nomial time algorithm can predict the predicate value with non-negligible
advantage). For details see [GNW95].

On the face of it, the two settings seem somewhat different: here we
deal with protocol views, whereas Yao’s XOR-lemma deals with predicates.
Still, bearing in mind that we are referring to the semi-honest model, the
receiver’s view of the protocol is simply a random variable, and the other
secret (i.e., σ1−i) is a predicate of this view 9. Our basic predicate receives,
as an input, the receiver’s view of the subprotocol and returns the value
of σ1−i that determined by the view. Notice that the value of σ1−i in the
high-level protocol, is by the definition of the protocol, the XOR of the
ω1−i’s) in the different executions of the subprotocol. Therefore, predicting
the value of σ1−i from the receiver’s view of the high-level protocol, is
actually predicting the value of the predicate defined as the XOR of our
basic predicate. By the Sender’s privacy property of the subprotocol, it
is hard to predict too well the value of our basic predicate and by Yao’s
XOR-lemma the claim follows.

More formally, for any fixed i in {0, 1}, let Zn be a random variable rep-
resenting the receiver’s view of the following variant of the subprotocol. In
this variant, the receiver uniformly selects σ0 and σ1 in {0, 1} (rather than
receiving them as input) and the rest of the execution proceeds as usual. Let
g be the predicate that assigns to any possible value z of Zn the value of
σ1−i determined by z. We notice that by the Sender’s privacy property of

the subprotocol (recall that the subprotocol is
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−

WOT ), there is no polynomial time algorithm that predicts g(Zn) with ad-

9Our discussion presuppose that the receiver’s view uniquely determines the value
of σ1−i. This is not necessarily the case. We may assume, however, that this is the
case. For example, we may modify the subprotocol by augmenting a new phase where
the sender commits itself to the values of σ0 and σ1. Clearly, given that the subprotocol
is a

(
1

nq′(n)t(n) , 1− 1
t(n) ,

1
nq′(n)t(n)

)
−WOT , so is the modified protocol. Moreover, the

receiver’s view of the modified protocol does uniquely determine the value of σ1−i.
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vantage better than 1
2
− 1

2t(n)
. Let G be the predicate that assigns to any

sequence (z1, z2, . . . , znt(n)), where each of the z’s is taken from Zn, the value⊕nt(n)
j=1 g(zj). By the weak unpredictability of g and (the uniform version

of) Yao’s XOR-lemma, there is no polynomial time algorithm that predicts
G(z1, z2, . . . , znt(n)) with advantage greater than 1

2
· (1− 1

t(n)
)nt(n) + neg(n) ≈

neg(n). (Note that in order to apply the uniform version of Yao’s XOR-
lemma, we need to have the ability to sample Zn, but this can be done by
simulating both sides of the subprotocol). Now, the point is that by the
definition of G and the distribution of its inputs, predicting G is identical to
predicting the value of σ1−i from the receiver’s view the following variant
of the high-level protocol. In this variant, the receiver uniformly selects σ0

and σ1 in {0, 1} (rather than receiving them as input), and the rest of the
execution proceeds as usual. Moreover, it is easy to see that, predicting the
value of σ1−i given receiver’s view of the above variant, is as hard as in the
(original version of the) high-level protocol. Therefore, predicting σ1−i in the
high-level protocol is as hard as predicting G, and the claim follows.

6.2.3 Proving the Receiver’s privacy property - The sender does
not gain more information about i than 1

q′(n)

The sender’s view of the high-level protocol is a concatenation of nt(n) views

of the subprotocol (i.e.,
(

1
nq′(n)t(n)

, 1− 1
t(n)

, 1
nq′(n)t(n)

)
−WOT ). Therefore, the

statistical difference between the sender’s views of the high-level protocol in
case i = 0 and the case i = 1, is at most nt(n) times the statistical difference
between the sender’s views of the subprotocol in these cases. Recalling that
the latter is 1

nq′(n)t(n)
, we are done.

7 Using
(

1
nq′′(n), neg(n), 1

nq′′(n)

)
−WOT to construct(

neg(n), neg(n), 1
q′′(n)

)
−WOT

Recall that q′′ is any positive polynomial.
In the following protocol the sender repeatedly transfers σi to the receiver,

using
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−WOT and the receiver determine the correct

value using majority rule. The point is to decrease the probability that the
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receiver wrongly determines σi.

7.1 The protocol

Recall that the protocol’s inputs are: the sender’s secrets, σ0 and σ1, and
the receiver’s index, i.

1. The sender transfers σi for n times to the receiver, using
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−

WOT .

That is, the parties invoke
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−WOT for n times,

such that in each invoking the sender’s secrets are σ0 and σ1 and the
receiver’s index is i.

2. The receiver decides the value of σi by majority rule.

Motivation: The probability that the receiver obtains the right value
of σi in a single iteration is very (i.e., at least 1 − 1

nq′′(n)
). Therefore,

the probability that through n independent iteration, the receiver

obtains the right value of σi in at least half of them, is overwhelming.

7.2 Analysis

In the following analysis we refer to the above protocol as the high-level

protocol, and we refer to
(

1
nq′′(n)

, neg(n), 1
nq′′(n)

)
−WOT as the subprotocol.

7.2.1 Proving the Correctness property - The probability that the
receiver does not outputs σi is negligible

The proof is immediate by Chernoff bound and the Correctness property of
the subprotocol.

7.2.2 Proving the Sender’s privacy property - The receiver gains
no computational knowledge about σ1−i

Intuitively, since the receiver’s view of the high-level protocol is a concate-
nations of n receiver’s views of the subprotocol, the computational knowl-
edge one might receive from the receiver’s view of the high-level protocol is
not more than n times the computational knowledge one might receive from
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the receiver’s view of the subprotocol. Hence, the receiver gains no more
computational knowledge about σ1−i than n times negligible, and therefore
no more than negligible.

The actual proof is by a hybrid argument. We assume, by contradiction,
the existence of a polynomial time algorithm, A, that has non-negligible
advantage in predicting σ1−i from the receiver’s view of the high-level pro-
tocol. For any k ∈ {0, 1, . . . , n}, the k-hybrid is defined as the receiver’s
view of the following variant of the high-level protocol. The variant consists
of k executions of the subprotocol with σ1−i set to 0, follows by n − k exe-
cutions of the subprotocol with σ1−i set to 1. Note that the extreme hybrids
are the receiver’s views of the high-level protocol with the different values
of σ1−i. (i.e., the 0-hybrid is the receiver’s view of the high-level protocol
where σ1−i = 0, and the n-hybrid is the receiver’s view where σ1−i = 1). By
the contradiction assumption, A distinguishes between the two extremes hy-
brids with non-negligible success, and therefore, A distinguishes between two
neighboring hybrids with non-negligible success. Note that any two neigh-
boring hybrids, differ only in the value of σ1−i in one of their subprotocol
executions. Hence, this protocol can predict with non-negligible advantage,
the value of σ1−i from the receiver’s view of the subprotocol, a contradiction
to the Sender’s privacy property of the subprotocol.

7.2.3 Proving the Receiver’s privacy property - The sender does
not gain more information about i than 1

q′′(n)

This analysis is analogous to the one given in Subsection 6.2.3.

8 Using (neg(n), neg(n), 1
3)−WOT to construct

(neg(n), neg(n), neg(n))−WOT

The following protocol follows the protocol presented by Crépeau and Kilian
[CK90], and is presented here for the sake of self-containment (since the
original paper does not contain the analysis of the protocol). The protocol
uses a kind of secret sharing applied to the receiver request (i.e., i) in order
to reduce the probability that the sender learns the request through the
protocol’s execution.
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8.1 The protocol

Recall that the protocol’s inputs are: the sender’s secrets, σ0 and σ1, and
the receiver’s index, i.

1. The receiver selects µ1, µ2, . . . , µn−1 uniformly in {0, 1}, and sets µn

to i⊕ (
⊕n−1

j=1 µj).

Motivation: The receiver “splits” the value of i among the different
µ’s such that

⊕n
j=1 µj = i. Thus, in order to know i, one should know

the values of all µ1, µ2, . . . , µn.

2. The sender selects ω0,1, ω0,2, . . . , ω0,n−1 uniformly in {0, 1} and sets ω0,n

to σ0 ⊕ (
⊕n−1

j=1 ω0,j).

3. For all 1 ≤ j ≤ n, the sender sets ω1,j to (ω0,j ⊕ σ0 ⊕ σ1).

Motivation: The sender “splits” its two secrets among the different
ω’s such that

⊕n
j=1 ω0,j = σ0 and for each j, ω1,j = ω0,j ⊕ σ0 ⊕ σ1.

Thus, in order to know σk one should know any sequence of secrets
ωx1,1, ωx2,2 . . . , ωxn,n with the property that

⊕n
j=1 xj = k.

4. For all 1 ≤ j ≤ n, the sender transfers ωµj ,j to the receiver using(
neg(n), neg(n), 1

3

)−WOT .

That is, the parties invoke
(
neg(n), neg(n), 1

3

)−WOT for n times such
that in the j’th invoking the sender’s secrets are ω0,j and ω1,j and the
receiver’s index is µj.

5. The receiver locally outputs
⊕n

j=1 ωµj ,j.

8.2 Analysis

In the following analysis we refer to the above protocol as the high-level
protocol, and we refer to (neg(n), neg(n), 1

3
)−WOT as the subprotocol.

8.2.1 Proving the Correctness property - The probability that the
receiver does not outputs σi is negligible

By the Correctness property of
(
neg(n), neg(n), 1

3

)−WOT we have that,
except for a negligible probability, the receiver receives ωµ1,1, ωµ2,2 . . . , ωµn,n
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correctly. Therefore the receiver outputs

n⊕
j=1

ωµj ,j =

(
n⊕

j=1

ω0,j

)
⊕


 ⊕

1≤j≤n,µj=1

(σ0 ⊕ σ1)




= σ0 ⊕
{

(σ0 ⊕ σ1) if
⊕n

j=1 µj = 1,

0 otherwise.

=

{
σ1 if

⊕n
j=1 µj = 1,

σ0 otherwise.

= σi

8.2.2 Proving the Sender’s privacy property - The receiver does
not gain computational knowledge about σ1−i

We prove an equivalent claim by which the receiver does not gain compu-
tational knowledge about the value of σ0 ⊕ σ1. In particular we assume that
it is impossible the predict the value of σ0 ⊕ σ1 from the receiver’s view of
the subprotocol, and we prove that it is impossible the predict the value of
σ0 ⊕ σ1 from the receiver’s view of the high-level protocol.

For simplicity we do not prove the claim directly for the high-level proto-
col, but rather for the randomized variant of the high-level protocol, where the
receiver uniformly selects σ0 and σ1 in {0, 1} (rather than receiving them
as input) and the rest of the execution proceeds as usual 10. The proof uses a
hybrid argument. We assume by contradiction the existence of a polynomial
time algorithm, A, that for some fixed i ∈ {0, 1}, has non-negligible advan-
tage in predicting σ0 ⊕ σ1 from the receiver’s view of the above variant.
For k ∈ {0, 1, . . . , n}, the k-hybrid is defined as the receiver’s view of the
following protocol: This protocol is the same as the randomized variant of
the high-level protocol described above, except for Step 3. In this protocol
version of Step 3, the last n− k ω1,·’s are uniformly chosen (rather than set
to ω1,· ⊕ σ0 ⊕ σ1). Formally, the modified version of Step 3 is:

3.′ For all 1 ≤ j ≤ k, the sender sets ω1,j to (ω0,j ⊕ σ0 ⊕ σ1),

for all k + 1 ≤ j ≤ n, the sender selects ω1,j uniformly in {0, 1}.
10It is easy to see that the Sender’s privacy property of this variant is the same as of

the original protocol.
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We note that one extreme hybrid (the n-hybrid) is the above variant of the
high-level protocol and therefore, by the contradiction assumption, A has
non-negligible advantage in predicting σ0 ⊕ σ1 from the receiver’s view of
this hybrid. We also note that the other extreme hybrid (the 0-hybrid) is
a protocol that is independent of the value of σ1 and therefore A has no
advantage in predicting the value of σ0⊕σ1 from the receiver’s view of this
hybrid. Hence, there exists two neighboring hybrids with a non-negligible
gap between the advantage A has in predicting the value of σ0 ⊕ σ1 from
the receiver’s views of the two hybrids. Thus, A distinguishes, with non-
negligible success, between the receiver’s views of two protocols, which
differ only in the inputs given to a single execution of the subprotocol. In
one of the protocols the value of σ0 ⊕ σ1 (in the call to the subprotocol) is
equal to this value in the protocol itself, where in the other protocol this
value is randomly chosen. Thus A can be used to contradict the Sender’s
privacy property of the subprotocol.

8.2.3 Proving the Receiver’s privacy property - The sender does
not gain non-negligible information about i

For any σ′0, σ
′
1 and i′ ∈ {0, 1}, let D

σ′0,σ′1
i′ be the random variable that repre-

sents the sender’s view of the subprotocol with inputs: σ′0, σ
′
1 and i′ (σ′0 and

σ′1 are the sender’s secrets, and i′ is the receiver’s index). Note that by the
Receiver’s privacy property of the subprotocol (recall that the subprotocol

is
(
neg(n), neg(n), 1

3

)−WOT ), the statistical difference between D
σ′0,σ′1
0 and

D
σ′0,σ′1
1 is not more than 1

3
.

In the following discussion, we fixed the bits υ1
0, υ

2
0, . . . , υ

n
0 , υ1

1, υ
2
1, . . . , υ

n
1

to some values in {0, 1}. For any i ∈ {0, 1}, let Zi be the random variable
that represents the sender’s view of the following variant of the high-level
protocol. In this variant, the receiver’s index is set to i, and the sender

shares are fixed to υ1
0, υ

2
0, . . . , υ

n
0 , υ1

1, υ
2
1, . . . , υ

n
1 (i.e., ωj

i is set to υj
i ). We

prove that the statistical difference between Z0 and Z1 is negligible, and
since υ1

0, υ
2
0, . . . , υ

n
0 , υ1

1, υ
2
1, . . . , υ

n
1 were chosen arbitrarily, the proof of the

Receiver’s privacy property follows.
The proof stems from the following claim, which is an immediate exten-

sion of [SV97, Prop. 3.6]:

Claim 8.2.1 Let {X1
0 , X

2
0 , . . . , X

n
0 } and {X1

1 , X
2
1 , . . . , X

n
1 } be two sequences

of independent random variables, and let Yk, for both k ∈ {0, 1}, be the fol-
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lowing random variable:

Yk: Choose m1,m2, . . . , mn uniformly in {0, 1} such that
(⊕n

j=1 mj

)
= k.

Output a sample of (X1
m1

, X2
m2

, . . . , Xn
mn

).

Then

stat(Y0, Y1) =
n∏

j=1

stat(Xj
0 , X

j
1)

Applying Claim 8.2.1 to the sequence
{

D
υ1
0 ,υ1

1
0 , D

υ2
0 ,υ2

1
0 , . . . , D

υn
0 ,υn

1
0

}
and{

D
υ1
0 ,υ1

1
1 , D

υ2
0 ,υ2

1
1 , . . . , D

υn
0 ,υn

1
1

}
, and the corresponding Z0 and Z1, we get that

stat(Z0, Z1) =
n∏

j=1

stat(D
υj
0,υj

1
0 , D

υj
0,υj

1
1 )

By the fact that for all j ∈ {1, 2, . . . , n}, stat(D
υj
0,υj

1
0 , D

υj
0,υj

1
1 ) < 1

3
, we get that

stat(Z0, Z1) < (1
3
)n, and we are done.

9 Further issues

A natural question to ask is whether a similar result can be obtained even
if the permutation requirement is somewhat relaxed. For example can we
construct an OT based on dense collection of injective one-way functions
(i.e., the domains of the functions contain polynomial fractions of all strings
of one length and the ranges of the functions contain polynomial fractions
of all strings of another length)? The answer is positive when we consider
length-preserving functions. Moreover, exactly the same construction as used
in this text can be used.

If the functions are not length-preserving, but the size of the function
range is dense both in 2n and in 2m (assuming that the function input is
n bit long and the output is m bit long), then the above result still holds.
The reason being that such a collection can be transformed into a dense
length-preserving collection, by padding, without lost of generality, the do-
main elements with m− n zeros.
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