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ABSTRACT
We give a construction of statistically-hiding commitment
schemes (ones where the hiding property holds information
theoretically), based on the minimal cryptographic assump-
tion that one-way functions exist. Our construction em-
ploys two-phase commitment schemes, recently constructed
by Nguyen, Ong and Vadhan (FOCS ‘06), and universal one-
way hash functions introduced and constructed by Naor and
Yung (STOC ‘89) and Rompel (STOC ‘90).

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Interactive and reactive
computation

General Terms
Theory

Keywords
Cryptography, One-way functions, Statistically hiding and
computationally binding commitment.

1. INTRODUCTION
A commitment scheme defines a two-stage interactive pro-

tocol between a sender S and a receiver R; informally, af-
ter the commit stage, S is bound to (at most) one value,
which stays hidden from R, and in the reveal stage R
learns this value. The two security properties hinted at
in this informal description are known as binding (namely,
that S is bound to at most one value after the commit
stage) and hiding (namely, that R does not learn the
value to which S commits before the reveal stage). In
a statistically-hiding computationally-binding commitment
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scheme (for short, statistical commitment) the hiding prop-
erty holds even against all-powerful receivers (i.e., hiding
holds information-theoretically), while the binding property
is required to hold only for polynomially-bounded senders.

Statistical commitment schemes can be used as a build-
ing block in constructions of statistical zero-knowledge ar-
guments [2, 14] and certain coin-tossing protocols [12]. It
therefore implies, via standard reduction, a way to trans-
form a large class of protocols that are secure assuming an
all powerful honest-but-curious party, into one that is secure
even when this party maliciously deviates from the protocol.
More generally, when used within protocols in which certain
commitments are never revealed, statistical commitments
have the following advantage over computationally-hiding
commitment schemes: in such a scenario, it needs only be
infeasible to violate the binding property during the period of
time the protocol is run, whereas the committed values will
remain hidden forever (i.e., regardless of how much time the
receiver invests after completion of the protocol).

Perfectly-hiding1 commitment schemes were first shown
to exist based on specific number-theoretic assumptions [1,
2] or, more generally, based on any collection of claw-free
permutations [7] with an efficiently-recognizable index set
[6]. Statistical commitment schemes can also be constructed
from collision-resistant hash functions [4, 15]. Naor et al.
[14] showed a construction of a perfectly-hiding commit-
ment scheme based on any one-way permutation. Haitner
et. al. [8] make progress by constructing statistical commit-
ment based on regular one-way functions and also on the so
called approximable-size one-way functions.

In their recent breakthrough result, Nguyen et al. [16]
show how to construct statistical zero-knowledge arguments
for NP based on any one-way function. The question of
whether one-way functions imply statistical commitments,
however, was left open.

We mention that the complementary notion of commit-
ment schemes, where the hiding is computational and the
binding holds even w.r.t. an all powerful sender, was already
known to be implied by the existence of one-way functions
[9, 13].

1Very informally, in a statistically-hiding commitment
scheme the receiver learns only a negligible amount of in-
formation about the sender’s committed value, whereas in
a perfectly-hiding commitment scheme the receiver learns
nothing. Note that any perfectly-hiding scheme is trivially
also statistically hiding.
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1.1 Our result
Our main result is that the existence of one-way func-

tions is a sufficient condition for the existence of statistical
commitment. Namely, we prove the following theorem.

Theorem 1.1. Assuming that one-way functions exist,
then there exists a statistically-hiding computationally-
binding commitment.

By Impagliazzo and Luby [10], the existence of statisti-
cal commitment schemes implies the existence of one-way
functions and thus the above result is tight.

1.2 Our technique
Our protocol combines, in a sense, the following two cryp-

tographic primitives: two-phase commitment schemes re-
cently presented by Nguyen et al. [16] (extending a similar
notion given in [17]) and universal one-way hash functions
presented by Naor and Yung [15]. Following is an informal
description of the primitives (a formal definition appears in
Section 2).

Universal one-way hash functions Universal one-way
hash functions are a relaxation of the notion of
collision-resistant hash functions. A family of com-
pressing hash functions is universal one-way if no
efficient algorithm succeeds in the following game
with more than negligible probability. The algorithm
should first announce a value x. Then, on a uniformly
selected hash function f (given to the algorithm af-
ter it announces x), it should find x′ �= x such that
f(x′) = f(x).

Rompel [18] shows that the existence of one-way func-
tions implies the existence of universal one-way hash
functions, this result was recently rewritten by Katz
and Koo [11], adding missing details and fixing some
errors.

Two-phase commitments In a two-phase commitment
scheme, the sender and the receiver interact in two
consecutive phases. In each phase they carry out a
commitment protocol (the commit stage and the re-
veal stage). The transcript of the first phase is used as
input for the second-phase commitment. A two-phase
commitment is statistically hiding, if before each of
the reveal stages the receiver has no information about
the committed value. A two-phase commitment is

(
2
1

)
-

binding, if the sender cannot cheat both in the first
phase and in the second phase. Specifically, after the
first-phase commit, there is a single value such that if
the sender decommits to any other value, then the sec-
ond commitment is guaranteed to be binding (in the
standard sense).

Nguyen et al. [16] prove that the existence of one-way
functions implies some non-uniform version of two-
phase commitment schemes.

The construction idea.
We would like to use two-phase commitment schemes to

construct a (standard) statistical commitment. A naive at-
tempt to design the commitment scheme may go as follows:
First, the sender commits to some random string x using
the first-phase commit stage. Then, the receiver flips a coin

phase ∈ {first, second}, if phase = first then the first-phase
commitment is used as the commitment (e.g., the sender
sends to the receiver the exclusive or of its secret with the
random string). Otherwise (phase = second), the two par-
ties execute the first-phase reveal stage and if successful (i.e.,
the receiver does not reject), they use the second-phase com-
mitment (invoked with the transcript of the first-phase as
input) as the commitment.

The intuition is that since the two-phase commitment
is

(
2
1

)
-binding, the sender cannot cheat in both phases to-

gether and thus the receiver would catch a cheating sender
with probability half. The problem is, however, that the
sender can decide in which commitment he likes to cheat af-
ter knowing the value of phase. Hence, the sender can cheat
successfully in both cases without violating the

(
2
1

)
-binding

of the underlying protocol.
Our key idea is to use universal one-way hash functions in

order to force the sender to decide in which phase it is about
to cheat before knowing the value of phase. Our actual
implementation is as follows: After the first-phase commit
stage, the receiver selects a random (universal one-way) hash
function f and the sender sends him back y = f(x). The
protocol proceeds essentially as the naive protocol above,
where any time the first-phase reveal stage is executed in the
naive protocol revealing the value x′ (either in the commit-
stage for phase = first or in the reveal stage for phase =
second), the receiver also verifies that f(x′) = y.

Assuming that the hash function, f , is “compressing
enough”, the string x (committed to in the first-phase com-
mitment) remains sufficiently hidden even f(x) is sent to R
(in the new variant of the protocol). Thus, in the case that
phase = first, the string x can still be used to statistically
hide the sender’s secret (assuming it is sufficiently shorter
than x). To show the statistical hiding in the complemen-
tary case when phase = second, it is sufficient to note that
sending f(x), does not compromise the hiding property of
the second-phase commitment. All in all, the protocol is
statistically hiding for both choices of phase and thus it is
statistically hiding.

To argue about the binding of the protocol, recall that the(
2
1

)
-binding of the two-phase commitment scheme informally

states that after the first-phase commit stage, there exists a
single value x̃ that allows the sender to cheat in the second-
phase commitment. Now, if the sender sends y such that
f(x̃) = y, then in order to cheat in the case phase = first,
it will have to open the first-phase commitment to a value
x′ �= x̃ such that f(x′) = y = f(x̃). This would imply the
breaking of the universal one-way hash functions. On the
other hand, if f(x̃) �= y, then in the case phase = second
the sender is forced to open the first-phase commitment to
a value different than x̃. This guarantees that the sender
cannot cheat in the second-phase commitment and thus in
this case our protocol is binding. In conclusion, since y is
sent before phase is chosen, we are guaranteed that our pro-
tocol is weakly-binding (since intuitively there always exists
a choice of phase that prevent the sender from cheating).
We complete the construction by amplifying the above pro-
tocol into a full-fledged statistical commitment scheme using
standard techniques.
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2. PRELIMINARIES

2.1 Notation
We denote the ith bit of a string x by x[i]. We denote the

exclusive or of the bits x and y by x ⊕ y. For k ∈ N, we
denote by [k] the set {1, . . . , k}. Given a set L, we denote
by x ← L the experiment in which x is uniformly chosen
from L. The statistical distance of two distributions P and
Q over Ω, denoted SD(P, Q), is defined as

SD(P, Q)
def
=

1

2

∑
x∈Ω

∣∣∣∣Pr
P

(x)− Pr
Q

(x)

∣∣∣∣ .

Given two interactive Turing machines (ITM) A and B, we
denote the protocol they define by (A,B) and denote the
following experiment by (oA | oB) ← 〈A(iA), B(iB)〉: The
protocol (A,B) is invoked with inputs iA and iB and the
outputs of the parties are assigned to oA and oB respectively.

2.2 Pairwise independent hash functions

Definition 2.1 (pairwise independent hash functions).

Let H be a family of functions mapping strings of length
�(n) to strings of length m(n). We say that H is an efficient
family of pairwise independent hash functions (following [3])
if the following hold: 2

Samplable. H is polynomially samplable (in n).

Efficient. There exists a polynomial-time algorithm that
given x ∈ {0, 1}�(n) and a description of h ∈ H outputs
h(x).

Pairwise independence. For every distinct x1, x2 ∈
{0, 1}�(n) and every y1, y2 ∈ {0, 1}m(n), we have:

Prh← H[h(x1) = y1

∧
h(x2) = y2] = 2−2m(n).

It is well known ([3]) that there exists an efficient
family of pairwise-independent hash functions for every
choice of � and m whose elements description size is
O(max {�(n), m(n)}).

In this paper we focus on Boolean families of hash func-
tions (i.e., m(n) = 1). The following standard lemma (see
for example, [5, Lemma 4.3.1]) states that a random pair-
wise independent hash function partitions a given set into
(almost) equal size subsets.

Lemma 2.2. Let H be a family of Boolean pairwise inde-
pendent hash functions defined over strings of length �(n)

and let L ⊆ {0, 1}�(n). Then for every δ > 0

Prh← H
[∣∣ ∣∣h−1(1) ∩ L

∣∣ − ∣∣h−1(0) ∩ L
∣∣ ∣∣ > δ · |L|] < 4

δ2·|L| .

2The first two properties, regarding the efficiency of the fam-
ily, implicitly assume an ensemble of families (one family for
every value of n). For simplify of presentation, we only refer
to a single family.

2.3 Universal one-way hash functions

Definition 2.3 (universal one-way hash functions).

Let F be a family of functions mapping strings of length
�(n) to strings of length m(n). We say that F is a family
of universal one-way hash functions (following [15]) if the
following hold: 3

Samplable. F is polynomially samplable (in n).

Efficient. There exists a polynomial-time algorithm that
given x ∈ {0, 1}�(n) and a description of f ∈ F outputs
f(x).

Compression. m(n) < �(n).

Hardness. For all ppt A and x ∈ {0, 1}�(n) the following
is negligible in n:

Pr[(x, state) ← A(1n), f ← F , x′ ← A(x, state, f) :

x′ �= x
∧

f(x′) = f(x)].

By [18] (full proof is given in [11]), it follows that assum-
ing the existence of a one-way function, there exists a fam-
ily of universal one-way hash functions for some polynomial
�(n) ≥ n. 4 Following [15, Lemma 2.1], we have that the lat-
ter construction implies a construction with m(n) ≤ 1

2
�(n).

Therefore, we have the following theorem.

Theorem 2.4. ([11, 15, 18]) If one way functions exist,
then for some positive polynomial �(n) ≥ n there exists a
family of universal one-way hash functions mapping strings
of length �(n) to strings of length m(n) ≤ �(n)/2.

2.4 Commitment schemes
In this paper we focus on bit-commitment schemes (i.e.,

the committed string is a single bit). Bit-commitment
schemes imply, via standard reductions, commitment
schemes of any (polynomial) length.

An interactive bit-commitment scheme (S ,R), with secu-
rity parameter n, consists of two probabilistic polynomial-
time interactive protocols: (Sc,Rc), the commit stage, and
(Sr,Rr), the reveal stage. We note that in all the con-
structions of this paper, the reveal stage will always be non
interactive, consisting of a single message from the sender to
the receiver. Throughout, both parties receive the security
parameter 1n as an input.

1. In the commit stage: Sc receives a private input
b ∈ {0, 1}. At the end, Sc locally outputs some private
information prvt and Rc outputs some public informa-
tion pub.

2. In the reveal stage: Sr and Rr receive a common input
pub and a bit b and Sr receives a private input prvt.
At the end, Rr accepts or rejects.

3We use the same convention as in Definition 2.1.
4The Hardness property of Definition 2.3 is somewhat
stronger than the one given in [11] (and somewhat weaker
than the original definition in [15]). The strengthening is
in allowing A to transfer additional information, i.e., state,
between the selection of x and finding the collision. We
note that the proof in [11] holds also w.r.t. to our stronger
definition (and even w.r.t. the original definition of [15]).
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We make the following correctness requirement: For all n,
all b ∈ {0, 1}, and every pair (prvt, pub) that may be output
by 〈Sc(1

n, b),Rc(1
n)〉, it is the case that Rr accepts in the

interaction 〈Sr(1
n, prvt, pub, b),Rr(1

n, pub, b)〉.
The security of a commitment scheme can be defined in

two complementary ways, protecting against either an all-
powerful sender or an all-powerful receiver. In this paper,
we are interested in the case of statistical commitment (i.e.,
the latter case).

Definition 2.5 (statistically hiding). A bit-
commitment scheme (S ,R) is ρ-hiding (for ρ a function
of n) if the following holds: Given an ITM R∗, let
view〈Sc(b),R∗〉(n) denote the distribution on the view of R∗
when interacting with Sc(1

n, b) (this view simply consists of
R∗’s random-coins and the sequence of messages it receives
from Sc), where this distribution is taken over the random
coins of Sc and R∗. Then we require that for any (even
all-powerful) R∗ the two ensembles

{
view〈Sc(0),R∗〉(n)

}
and

{view〈Sc(1),R∗〉(n)} have statistical difference at most ρ.

We say that a scheme is statistically hiding if it is ρ-hiding
for negligible ρ. A 0-hiding scheme is called perfectly hiding.

Definition 2.6 (Binding-break). Let (S ,R) be a bit
commitment protocol and let S∗ = (S∗c ,S∗r ) be an algo-
rithm that is trying to break the binding of this proto-
col. For any possible values of the commit stage, outs =

(prvt, pub), we define the function BindBreakS
∗
r ,Rr (outs)

def
=

minb∈{0,1} Pr[〈S∗r (outs, b),Rr(pub, b)〉 = Accept].

Definition 2.7 (computationally binding).

A bit-commitment scheme (S ,R) is ρ-binding (for ρ a func-
tion of n), if for all ppt S∗ and any positive polynomial p,
the following holds for large enough n:

Pr
outs ← 〈S∗

c (1n),Rc(1n)〉
[BindBreakS

∗
r ,Rr (outs) >

1

p(n)
] < ρ(n).

Note that in the above, assuming that S∗ consists of two
separate algorithms is without loss of generality, since any
information that S∗ passes between the two stages can be
encoded into its private output. We say that a scheme is
computationally binding if it is ρ-binding for negligible ρ.
The following amplifications are standard (see for example
[8]).

Proposition 2.8. There exists an efficient procedure
that given polynomially many bit-commitment schemes
which are all computationally binding and at least one
of them is statistically hiding, outputs a computationally-
binding statistically-hiding bit-commitment scheme.

Proposition 2.9. There exists an efficient procedure
that given a (1 − δ)-binding bit-commitment scheme for
some noticeable δ, outputs a computationally-binding bit-
commitment scheme, which is statistically hiding if the given
bit-commitment scheme is.

2.5 Two-phase commitments
The following definitions are taken from [16].

Definition 2.10 (two-phase commitments). A
two-phase commitment scheme (S ,R), with security pa-
rameter n and message lengths (k1, k2) = (k1(n), k2(n)),
consists of four probabilistic polynomial-time interactive
protocols: (S1

c ,R1
c) the first commit stage, (S1

r ,R1
r) the

first reveal stage, (S2
c ,R2

c) the second commit stage, and
(S2

r ,R2
r) the second reveal stage. Throughout, both parties

receive the security parameter 1n as input.

1. In the first commit stage, S1
c receives a private input

σ(1) ∈ {0, 1}k1 . At the end, S1
c locally outputs some

private information prvt1 and R1
c outputs some public

string pub1.

2. In the first reveal stage, S1
r and R1

r receive as common
input pub1 and a string σ(1) ∈ {0, 1}k1 and S1

r receives
as private input prvt1. Let trans be the transcript of
the first commit stage and the first reveal stage and
includes R1

r’s decision to accept or reject.

3. In the second commit stage, S2
c and R2

c both receive the
common input trans, and S2

c receives a private input
σ(2) ∈ {0, 1}k2 and prvt1. At the end, R2

c outputs some
public string pub2.

4. In the second reveal stage, S2
r and R2

r receive as com-
mon input pub2 and a string σ(2) ∈ {0, 1}k2 , and S2

r

receives as private input prvt1. At the end, R2
r accepts

or rejects.

As for standard commitment schemes, the security of the
sender is defined in terms of a hiding property. Loosely
speaking, the hiding property for a two-phase commitment
scheme says that both commit phases are hiding. Note that
since the phases are run sequentially, the hiding property
for the second commit stage is required to hold even given
the receiver’s view of the first stage.

Definition 2.11 (statistically hiding). A two-
phase commitment scheme (S ,R), with security parameter
n and message lengths (k1, k2) = (k1(n), k2(n)), is statis-
tically hiding if the following hold: Given an ITM R∗
and some value of σ(1), let view〈S1

c (σ(1)),R∗〉(n) denote

the distribution on the view of R∗(1n) when interacting

with S1
c (1n, σ(1)). Similarly, for some values of σ(2),

prvt1 and trans, let view〈S2
c (σ(2),prvt1),R∗〉(trans) denote the

distribution on the view of R∗(trans) when interacting

with S2
c (σ(2), prvt1, trans). We require that for any (even

all-powerful) R∗,
1. The views of R∗ when interacting with the sender in

the first phase on any two messages are statistically
indistinguishable. That is, for all σ(1), σ̃(1) ∈ {0, 1}k1 ,
view〈S1

c (σ(1)),R∗〉(n) is statistically indistinguishable to

view〈S1
c (σ̃(1)),R∗〉(n).

2. The views of R∗ when interacting with the sender
in the second phase are statistically indistinguishable
no matter what the sender committed to in the first
phase. That is, for all σ(1) ∈ {0, 1}k1 and σ(2), σ̃(2) ∈
{0, 1}k2 , view〈S2

c (σ(2),prvt1),R∗〉(trans) is statistically in-

distinguishable to view〈S2
c (σ̃(2),prvt1),R∗〉(trans),
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where prvt1 is the private output of S1
c in

the first-phase commit stage and trans =
transcript〈S1(1n, σ(1)),R∗(1n)〉.

We stress that the second condition of the above hid-
ing definition (Definition 2.11) requires that the view of
receiver in the second phase be indistinguishable for any
two messages even given the transcript of the first phase,
trans = transcript〈S1(1n, σ(1)),R∗(1n)〉.

Loosely speaking, the binding property says that at least
one of the two commit phases is (computationally) binding.
In other words, for every polynomial-time sender S∗, there
is at most one “bad” phase j ∈ {1, 2} such that given the
common output pubj , S∗ can open pubj successfully both as
σ(j) and σ̃(j) �= σ(j) with non-negligible probability. Actu-
ally, we allow this bad phase to be determined dynamically
by S∗. Moreover, the second phase is statistically binding if
the sender breaks the first phase. 5

Definition 2.12 (

(
2
1

)
-binding). A two-phase commit-

ment scheme (S ,R), with security parameter n and mes-
sage lengths (k1, k2) = (k1(n), k2(n)), is computationally(
2
1

)
-binding if there exists a set B of first-phase transcripts

and a negligible function ε such that:

1. For every (even unbounded) sender S∗, the first-
phase transcripts in B make the second phase sta-
tistically binding, i.e., ∀ ITM S∗, ∀trans ∈ B,
with probability at least 1 − ε(n) over pub2, the
output of R2

c in 〈S∗(prvt1, trans), R2
c(trans)〉, there

is at most one value σ(2) ∈ {0, 1}k2 such that

〈S∗(prvt1, pub2, σ(2)), R2
r(pub2, σ(2))〉 = Accept.

2. Any ppt S∗ succeeds in the following game with prob-
ability at most ε(n) for all sufficiently large n:

(a) S∗ and R1
c interact and R1

c outputs pub1. Let
trans1 be the transcript of the interaction.

(b) S∗ outputs two full transcripts trans and t̃rans of
both phases with the following three properties:

• Transcripts trans and t̃rans both start with
prefix trans1.

• The transcript trans contains a successful
opening of pub1 to the value σ(1) ∈ {0, 1}k1

using a first-phase transcript not in B, and
R1

r and R2
r both accept in trans.

• The transcript t̃rans contains a successful
opening of pub1 to the value σ̃(1) ∈ {0, 1}k1

using a first-phase transcript not in B, and
R1

r and R2
r both accept in t̃rans.

(c) S∗ succeeds if all of the above conditions hold and

σ(1) �= σ̃(1).

5In this paper, we do not use the fact that the second phase
is statistically binding and not merely computationally bind-
ing.

Theorem 2.13. ([16, Theorem 7.10]) If one way func-
tions exist, then there exists an efficient procedure that
on security parameter n, outputs a collection of public-
coin two-phase commitment schemes Com1, . . . , Comm for
m = poly(n) such that:

• There exists an index i such that the scheme Comi is
statistically hiding. 6

• For every index j, scheme Comj is
(
2
1

)
-binding.

Remark 2.14. While not stated explicitly in [16], the
proof of Theorem 2.13 yields that the message lengths of
Com1, . . . , Comm, which appear in the theorem, can be cho-
sen to be any positive polynomials.

3. THE CONSTRUCTION
Given a two-phase commitment scheme and a family

of universal one-way hash functions, we construct a bit-
commitment scheme such that the following holds: The
scheme is statistically hiding whenever the two-phase com-
mitment scheme is statistically hiding and the scheme is
weakly binding whenever the two-phase commitment scheme
is

(
2
1

)
-binding. Thus, assuming that one-way functions ex-

ist, the existence of a polynomial set of weakly-binding bit-
commitment schemes where at least one of them is statis-
tically hiding follows by Theorem 2.4 and Theorem 2.13.
Finally, we use standard reductions to amplify the latter set
of commitment schemes into a full-fledged statistical com-
mitment scheme.

3.1 Main reduction
In this section we construct a bit-commitment scheme

with the following properties: The scheme is statistically
hiding whenever the two-phase commitment is statistically
hiding and the scheme is weakly binding whenever the two-
phase commitment is

(
2
1

)
-binding.

Construction 3.1 (the basic scheme). Let F be a
family of universal one-way hash functions mapping strings
of length �(n) to strings of length m(n) ≤ 1

2
�(n), let H

be a family of Boolean pairwise independent hash functions

defined over strings of length �(n) and finally let (S̃, R̃)
be a two-phase commitment scheme with message lengths
(�(n), 1). We define the bit-commitment protocol (S ,R) as
follows:

6This property holds, regardless of whether the one-way
function for which the scheme is based on is one-way or
not.
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Commit stage:

Common input: 1n.
Sender’s private input: b ∈ {0, 1}.

1. Sc chooses uniformly at random z ∈ {0, 1}�(n).

2. (Sc,Rc) run 〈S̃1
c (z), R̃1

c(1
n)〉, with Sc and Rc acting

as S̃1
c and R̃1

c respectively.

Let pub1 be the public output and let prvt1 be the

private output of S̃1
c in the above interaction.

3. Rc chooses uniformly at random f ∈ F and sends
it to S.

4. Sc sends y = f(z) back to R.
5. Rc chooses a random value phase ∈ {first, second}.

If phase = first, // Basing the commitment
on the hardness of F.

(a) Sc chooses uniformly at random h ∈ H and
sends h and c = b⊕ h(z) to Rc.

(b) Rc outputs pub = (first, f, y, h, c).

(c) Sc locally outputs prvt = z.

Otherwise (i.e., phase = second), // Basing the
commitment on the second phase commit-
ment.

Sc sends z to Rc and (Sc,Rc) run

〈S̃1
r (prvt1, pub1, z), R̃1

r(pub1), z)〉, with Sc and

Rc acting as S̃1
c and R̃1

c respectively. Let trans be
the transcript of the above interaction.

If R̃r
c rejects, then Rc outputs ⊥ (i.e., it will be im-

possible to decommit this interaction). Otherwise,

(a) (Sc,Rc) run 〈S̃2
c (b, prvt1, trans), R̃2

c(trans)〉,
with Sc and Rc acting as S̃2

c and R̃2
c respec-

tively.

Let pub2 be the public output in the above in-
teraction.

(b) Sc locally outputs prvt = prvt1 and Rc outputs
pub = (second, pub2).

Reveal stage:

In case phase = first,
Common input: 1n, b ∈ {0, 1} and pub =
(first, f, y, h, c).
Sender’s private input: prvt = z.

Sr sends z to Rr.

If f(z) �= y or c ⊕ h(z) �= b, then Rr outputs Reject.
Otherwise, Rr outputs Accept.

In case phase = second,
Common input: 1n, b ∈ {0, 1} and pub =
(second, pub2).
Sender’s private input: prvt = prvt1.

(Sr,Rr) run 〈S̃2
r (prvt1, pub2, b), R̃2

r(pub2, b)〉, with Sr and

Rr acting as S̃2
r and R̃2

r respectively.

Rr outputs the same output as R̃2
r does in the above in-

teraction.

The correctness of the above commitment scheme is ev-
ident given that the underlying two-phase commitment is
correct. In Section 3.1.1, we prove that above scheme is
statistically hiding whenever the underlying two-phase com-
mitment is hiding. In Section 3.1.2, we prove that if F is a
family of universal one-way hash functions and the under-
lying two-phase commitment is

(
2
1

)
-binding, then the above

scheme is weakly binding.
Remark 3.2. We note that by changing slightly the pro-

tocol of Construction 3.1, we could directly get a weakly-
binding statistically-hiding commitment scheme for any
polynomial length (rather than for a single bit). Since the
proof of the current version is somewhat simpler, and since
the transformation from bit-commitment scheme to commit-
ment scheme of any (polynomial) length bit-strings is stan-
dard, we chose to present the above version.

3.1.1 The scheme is statistically hiding
Lemma 3.3. If (S̃, R̃) is statistically hiding, then (S ,R)

is statistically hiding.

Proof. Assuming that (S̃, R̃) is statistically hiding, then
the (statistical) hiding in the case that phase = second is ev-

ident. That is, by the hiding of (S̃, R̃), no information about
b has leaked to the receiver. Note that the receiver also gets
the values of f and f(z), but this information could be gen-
erated from z and thus it reveals no additional information
about b.

In the complementary case (phase = first) the situation is
a bit more involved. Essentially, the only information that
the receiver obtains about b is y = f(z) and c = b ⊕ h(z).
Since f is condensing and by the pairwise independence of
H, it is easy to see that with overwhelming probability (y, c)
contains only negligible information about b and thus the
protocol is statistically hiding. Let us turn to the formal
proof. Let (S ′,R′) be the same protocol as (S ,R), but where
in Line (2) of the commit stage, the first-phase commit of

(S̃, R̃), is always executed with S̃1
c ’s input set to 0�(n) (in-

stead of z) and phase is always set to first. Since (S̃, R̃) is
statistically hiding, (S ′,R′) is statistically hiding if and only
if (S ,R) is. Otherwise, one could have designed a statistical

test that distinguishes a commitment to 0�(n) from a com-
mitment to a random z (that is known to the test), which

contradicts the statistical hiding of the first phase of (S̃, R̃).
Hence, for the following discussion we concentrate on the
hiding property of the protocol (S ′′,R′′), where Line (2) is
not executed at all (it is obvious that (S ′′,R′′) is statistically
hiding if and only if (S ′,R′) is).

Let us fix a deterministic ITM R∗ that interacts with S ′′c
in the commit stage of (S ′′,R′′), note that since we allow
R∗ to be unbounded, assuming that R∗ is deterministic is
without loss of generality. For a given value of n, it follows
that since R∗ is deterministic and it sends the hash function
f as the first message of the interaction, f is the same in
all interactions. We denote this value of f by f∗. The
view of R∗ when interacting with S ′′c consists of the values
of y = f∗(z), h and c = b ⊕ h(z). Note that the only
difference between a commitment to one and a commitment
to zero is the value of c. Let v be a possible view of R∗
in the interaction with S ′′c and let h, y and c be the values
of these variables in v. It follows that for both b ∈ {0, 1}
Pr[view〈S′′

c (b),R∗〉(n) = v] = 1
|H| · Prz ← {0,1}�(n) [f∗(z) = y] ·

Prz ← {0,1}�(n) [b ⊕ h(z) = c | f∗(z) = y]. Therefore,
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SD(view〈S′′
c (0),R∗〉(n), view〈S′′

c (1),R∗〉(n))

=
1

2

∑
v

|Pr[view〈S′′
c (0),R∗〉(n) = v]

−Pr[view〈S′′
c (1),R∗〉(n) = v]|

=
1

2
· 1

|H|
∑
y,h,c

Pr
z ← {0,1}�(n)

[f∗(z) = y] ·

| Pr
z ← {0,1}�(n)

[0⊕ h(z) = c | f∗(z) = y]

− Pr
z ← {0,1}�(n)

[1⊕ h(z) = c | f∗(z) = y]|

=
1

2
· 1

|H|
∑
y,h

Pr
z ← {0,1}�(n)

[f∗(z) = y] ·

2 · | Pr
z ← {0,1}�(n)

[h(z) = 0 | f∗(z) = y]

− Pr
z ← {0,1}�(n)

[h(z) = 1 | f∗(z) = y]|

= Ex
z ← {0,1}�(n),h← H[ ∣∣∣∣(f∗)−1(z) ∩ h−1(0)

∣∣ − ∣∣(f∗)−1(z) ∩ h−1(1)
∣∣∣∣

|(f∗)−1(z)|

]
.

The proof of Lemma 3.3 is concluded by the following
claim and by the pairwise independent of H (Lemma 2.2).

Claim 3.4. For any f ∈ F it holds that

Prz ← {0,1}�(n) [
∣∣f−1(f(z))

∣∣ ≤ 2
1
4 �(n)] ≤ 2−

1
4 �(n).

Proof. For a given value of f ∈ F , we say that y ∈
{0, 1}m(n) is light, if

∣∣f−1(y)
∣∣ < 2

1
4 �(n). Clearly, f has at

most 2m(n) light images and therefore there are at most

2
1
4 �(n) · 2m(n) ≤ 2

3
4 3�(n) elements in {0, 1}�(n) for which∣∣f−1(f(z))

∣∣ ≤ 2�(n)/4.

3.1.2 The scheme is weakly binding

Lemma 3.5. If (S̃, R̃) is
(
2
1

)
-binding and F is a family of

universal one-way hash functions, then (S ,R) is 35
36

-binding.

Proof. Let S∗ = (S∗c ,S∗r ) be an algorithm trying to
break the binding of (S ,R) and recall BindBreak from Def-
inition 2.6. Let d ∈ {first, second} and let p be a posi-

tive polynomial, we define γp
d(n)

def
= Prouts ← 〈S∗

c (1n),Rc(1n)〉
[BindBreakS

∗
r ,Rr (outs) > 1

p(n)
| phase = d] (for ease of read-

ing from now on we omit the superscript (S∗r ,Rr) from
BindBreak). Namely, γp

d(n) is the probability that condi-
tioned on phase = d, the output of the commit stage enables
S∗ to cheat in the reveal stage with noticeable probability.
The proof of the Lemma 3.5 follows by the next claim.

Claim 3.6. Let p be a positive polynomial, then for large
enough n there exists d ∈ {first, second} such that γp

d(n) <
17
18

.

Therefore, for any positive polynomial p and large enough n,
Prouts← 〈S∗(1n),Rc(1n)〉[BindBreak(outs) > 1

p(n)
] = Pr[phase

= first] · γp
0 (n) + Pr[phase = second] · γp

1 (n) ≤ 1− 1
2
· 1

18
and

the proof of Lemma 3.5 follows.

Proof. (of Claim 3.6) We assume toward a contradic-
tion that the claim does not hold and prove that either the

hardness of the universal one-way hash functions or the
(
2
1

)
-

binding of the underlying two-phase commitment scheme
are violated. More formally, let p be a positive polyno-
mial that for infinitely many n’s and for both values of
d ∈ {first, second}, it holds that γp

d(n) ≥ 9
10

. Assuming that

the
(
2
1

)
-binding of the underlying bit-commitment scheme

holds, we use S∗ to construct an algorithm MS
∗
, described

next, that violates the hardness of the universal one-way
hash functions, F . Recall that in order to violate the hard-
ness of F , MS

∗
should succeed in the following experiment

with non-negligible probability. MS
∗

announces a value x
and then given a random f ∈ F , it needs to output x′ �= x
such that f(x) = f(x′).

Before presenting the algorithm, we would like first to
make the dependency of S∗c and Rc on the their random-
coins explicit. That is, we assume that S∗c and Rc are
deterministic algorithms that get as additional inputs ran-

dom strings randS∗
c
∈ {0, 1}�S∗

c
(n)

and (phase, f, randRc)

∈ {first, second} ×F × {0, 1}�Rc (n) respectively. We assume
w.l.o.g. that both �S∗

c
and �Rc are some known polynomials.

MS
∗
:

First stage, announcing x.
Input: 1n

a Select uniformly at random rand =

(randS∗
c
, randRc) ∈ {0, 1}�S∗

c
(n) × {0, 1}�Rc (n)

and f1 ∈ F .
b Simulate 〈S∗c (randS∗

c
),Rc(second, f1, randRc)〉.

Let z be the value of ’z’ that S∗c sends to Rc in the
above simulation.

c Output x = z and state = rand.

Second stage, finding a collision with x.
Input: f2 ∈ F , state = (randS∗

c
, randRc), x.

d Simulate 〈S∗c (randS∗
c
),Rc(first, f2, randRc)〉.

Let outs = (prvt, pub) be the private output of S∗c
and the public output in the above simulation.

e For both i ∈ {0, 1}:
Simulate 〈S∗r (prvt, pub, i),Rr(pub, i)〉.
Let zi be the value of the variable ’z’ that S∗r sends
to Rr in the above simulation.

f If there exists j ∈ {0, 1} such that zj �= x, then output
it as x′.

Some intuition:.
By the

(
2
1

)
-binding of (S̃, R̃), it follows that after the first-

phase commit stage, there exists, at most, a single value z̃

(determined by the random coins of S∗ and R̃) such that S∗
is able to open the first-phase commitment to this value and
then to cheat in the second-phase commitment. 7 Since we
assume that S∗ manages to cheat (also) for phase = second,
we therefore have that it must be able to break the binding

second-phase commitment of (S̃, R̃). Thus, it should hold

that x, announced by MS
∗
, is equal to z̃.

Let us now consider the second-stage of MS
∗
. Since S∗c

does not know the value of phase when sending y in the
7We stress that information theoretically there might be
many values that by opening the first-phase commitment
to them, would allow cheating in the second-phase commit-
ment. There is, however, at most one such value that S∗ is
able to open the commitment to it.
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simulation of Line (d), it should send y such that y = f2(z̃)
(where y is the value sent by S∗r to Rr after the first-phase
commit stage). The point is that since we are using the
same random coins as in the first stage, this is the same z̃
as before. Whenever S∗ breaks the commitment for phase =
first, it needs to send two distinct elements z0 �= z1 such that
f2(z0) = f2(z1) = y. Thus, w.h.p. it holds that f2(z0) =

f2(z1) = f2(z̃) = f2(x) and MS
∗

violates the hardness of F.

Claim 3.7. If (S̃, R̃) is
(
2
1

)
-binding and Claim 3.6 does

not hold, then MS
∗
violates the hardness of F.

Proof. For rand ∈ randS∗
c
× randRc , f ∈ F

and phase ∈ {first, second}, let outs(rand, f, phase)
be the private and public outputs in the interaction
of 〈S∗c (randS∗

c
),Rc(phase, f, randRc)〉. Similarly, let

zc(rand, f) be the value of z that S∗c sends to Rc in the
interaction of 〈S∗c (randS∗

c
),Rc(second, f, randRc)〉. Infor-

mally, the following lemma states that (the random coins
of) the first-phase commitment determines a value z̃ (and
thus z̃ is independent of f) such that the following hold: In
case phase = first, S∗ finds a collision of z̃ w.r.t. f . In case
phase = second, S∗ opens the first-phase commitment to z̃.

Lemma 3.8 (Mapping lemma). Assuming that (S̃, R̃)
is

(
2
1

)
-binding and that Claim 3.6 does not hold, then there

exists a set L ⊆ {0, 1}�S∗
c

(n) × {0, 1}�Rc (n) of density 1
6

and

a mapping σ : L �→ {0, 1}�(n) such that the following hold
for all rand ∈ L:

1. Prf ← F [zc(rand, f) = σ(rand)] ≥ 1
2
.

2. For both values of phase ∈ {first, second},
Prf ← F [BindBreak(outs(rand, f, phase)) ≥ 1

p(n)
] ≥ 5

6
.

We defer the proof of Lemma 3.8 and first use it for prov-
ing Claim 3.7. For rand = (randS∗

c
, randRc) and f ∈ F , let

y(rand, f) be the value of y that S∗c sends to Rc in the inter-
action of 〈S∗c (randS∗

c
),Rc(phase, f, randRc)〉 for some value

of phase. (Note that y(rand, f) is well defined, since y is sent
before phase is made public and thus it depends only on the
values of rand and f). For i ∈ {0, 1}, we define the random
variable Zi

r(rand, f) as the value of z that S∗r sends to Rr in
the (reveal-stage) interaction of 〈S∗r (i, prvt, pub),Rr(i, pub)〉,
where (prvt, pub) = outs(rand, f, first).

By the definition of (S ,R) it follows that if Rr ac-
cepts in the interaction of 〈S∗r (i, prvt, pub),Rr(i, pub)〉, it
must hold that f(Zi

r(rand, f)) = y(rand, f) and that
h(Zi

r(rand, f))⊕ i = c (where h and c are the value of these
variables that S∗r sends to Rr in the interaction). It fol-
lows that if BindBreak(outs(rand,first, f)) ≥ ε (for some ε >
0), then Pr[Z0

r (rand, f) �= Z1
r (rand, f)

∧
f(Z0

r (rand, f)) =
Z1

r (rand, f) = y(rand, f)] ≥ ε2. On the other hand, if
BindBreak(outs(rand, second, f)) > 0, then it must hold that
f(zc(rand, f)) = y(rand, f).

We conclude that if BindBreak(outs(rand, phase, f)) ≥ ε
for both values of phase, then Pr[Z0

r (rand, f) �=
Z1

r (rand, f)
∧

f(Z0
r (rand, f)) = Z1

r (rand, f) =
f(zc(rand, f)))] ≥ ε2. Thus, by applying Lemma 3.8
we have that for any rand ∈ L,

Pr
f ← F

[Z0
r (rand, f) �= Z1

r (rand, f) (1)∧
f(Z0

r (rand, f)) = f(Z1
r (rand, f)) = f(σ(rand))]

≥ 1

p(n)2
· Pr

f ← F

[
zc(rand, f) = σ(rand)

∧

∀phase ∈ {first, second} BindBreak(outs(rand, f, phase))

≥ 1

p(n)

]
≥ 1

p(n)2
· (1

2
− 1

6
− 1

6
) =

1

6p(n)2
,

where the probability is also over the random coins of S∗r .
We are now finally ready to show that MS

∗
violates the

hardness of F . Recall the definition x, x′, z0 and z1 from
the definition of MS

∗
. By Eq. (1) it follows that conditioned

on state ∈ L,

Pr
f2 ← F

[z0 �= z1

∧
f2(z0) = f2(z1) = f(σ(state))] ≥ 1

6p(n)2
.

(2)

Recall that x is defined as zc(state, f1). Thus, the first
property of Lemma 3.8 yields that conditioned on state ∈ L,

Prf1 ← F [x = σ(state)] ≥ 1
2
. (3)

Conditioning on state, the events of Eq. (2) and Eq. (3) are
independent. Hence, Pr[z0 �= z1

∧
f(x) = f(z0) = f(z1) |

state ∈ L] ≥ 1
2
· 1

6p(n)2
. Recall that x′ takes the value in

{z0, z1} that is different than x. It follows that Pr[x′ �=
x

∧
f2(x

′) = f2(x) | state ∈ L] ≥ 1
12p(n)2

and since L is of

noticeable density, MS
∗

violates the hardness of F .

Proof. (of Lemma 3.8) For both d ∈ {first, second},
let Gd be the set of random coins that conditioned on
phase = d, algorithm S∗ manages to break the binding

of the protocol with high probability. Namely, Gd
def
={

rand : Prf ← F [BindBreak(outs(rand, f, d)) ≥ 1
p(n)

] ≥ 5
6

}
.

Since for both d ∈ {first, second} we assumed that
γp

d(n) ≥ 17
18

, it follows by a straight forward averaging
argument that for both d ∈ {first, second} it holds that

Pr[Gd] ≥ 2
3
. Therefore, G

def
= Gfirst ∩ Gsecond is of density at

least 1
3
. For any z ∈ {0, 1}�(n) and any value of rand, let

wrand(z)
def
= Prf ← F [zc(rand, f) = z].

Claim 3.9. Prrand← G[�z ∈ {0, 1}�(n) s.t. wrand(z) >
1
2
] = neg.

Thus, we conclude the proof of Lemma 3.8, by defining

L
def
= G ∩

{
rand : ∃z ∈ {0, 1}�(n) s.t. wrand(z) > 1

2

}
and

defining σ(rand) to be the value of z ∈ {0, 1}�(n) for which
wrand(z) > 1

2
.

Proof. (of Claim 3.9) For rand = (randS∗
c
, randRc) and

f ∈ F , let trans(rand, f, second) be the first-phase tran-

script of the interaction with R̃ embedded in the transcript
of 〈S∗c (randS∗

c
),Rc(second, f, randRc)〉 (i.e., the transcripts

of the interactions with R̃1
c and R̃1

r). Recall the set B from

Definition 2.10 w.r.t. (S̃, R̃), which has the property that

if a first-phase transcript of an interaction with R̃ is in B,

then the second-phase commitment with R̃ is statistically
binding. It follows that for almost all rand ∈ G (save but a
set of negligible probability) it holds that,

Pr
f ← F

[
BindBreak(outs(rand, f, second)) ≥ 1

p(n)∧
trans(rand, f, second) /∈ B

]
≥ 5

6
− neg(n).
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Let’s assume towards a contradiction that Claim 3.9 does
not hold. Therefore, by the above observation there exists a
set G′ ⊆ G of non-negligible density such that the following
holds for any rand ∈ G′:

1. �z ∈ {0, 1}�(n) s.t. wrand(z) > 1
2
,

2. Prf ← F

[
BindBreak(outs(rand, f, second) ≥ 1

p(n)∧
trans(rand, f, second) /∈ B

]
≥ 2

3
.

We conclude the proof by showing that the existence of

G′ implies a violation of the
(
2
1

)
-binding of (S̃, R̃). Be-

fore doing that, we would like to make the dependence of
Rc in its random coins even more explicit. Recall that we
assume that Rc is a deterministic algorithm that gets as
an additional input the random coins (phase, f, randRc) ∈
{first, second} × F × {0, 1}�Rc (n). To make the discussion
more precise, we write that randRc = (randR̃1

c
, randother)

where randR̃1
c
∈ {0, 1}�R̃1

c
(n)

are the random coins used in

the interaction of R̃1
c embedded in the interaction of Rc.

The following algorithm violates the
(
2
1

)
-binding of (S̃, R̃).

TS
∗
:

Input: 1n

The interaction part.

a Select uniformly at random randS∗
c
∈ {0, 1}�S∗

c
(n)

.

b Interact with R̃1
c(1

n) by invoking S∗c (randS∗
c
) and sim-

ulating its interaction with Rc by forwarding mes-

sages between S∗c and R̃1
c .

Let trans1 be the transcript of the above interaction

and let randR̃1
c

be the random coins used by R̃1
c in

the above interaction. (We do not need to actually

know the value of randR̃1
c

for the run of TS
∗

and

only use it in order to simplify notation.)

Producing two transcripts.

a Select uniformly at random randother ∈
{0, 1}�R1

c
(n)−�R̃1

c
(n)

.

b For both i ∈ {0, 1}:
1. Select uniformly at random fi ∈ F .
2. Simulate

〈S∗c (randS∗
c
),Rc(second, fi, randR̃c

, randother〉
starting from Line 3 of Construction 3.1. (Note
that given trans1, we do not need to know
randR̃c

in order to simulate).

Let outs2i = (prvt2i , pub2
i ), where prvt2i and prvt2i

are the private output of S∗c and the public out-
put in the above simulation respectively. Let
trans2i and trans3i be the transcripts of the in-

teractions with R̃1
r and R̃2

c in the above simu-
lation.

3. Simulate 〈S∗r (prvt2i , pub2
i , 0),Rr(pub2

i , 0)〉.
Let trans4i be the transcript of the interaction

with R̃2
r in the above simulation.

4. Set transi = (trans1, trans2i , trans3i , trans4i ).
c Output (trans0, trans1).

Claim 3.10. TS
∗

violates the
(
2
1

)
-binding of (S̃, R̃).

Proof. Conditioned on rand ∈ G′, we have by the sec-
ond property of G′ that

Pr
f0 ← F

[
BindBreak(outs0) ≥ 1

p(n)

∧
(trans1, trans20) /∈ B

]
≥ 2

3
.

(4)

Clearly, the above also holds w.r.t. f1, outs1 and trans21.
Moreover, by the first property of G′, we have the following
w.r.t. any z ∈ {0, 1}�(n),

Pr
f1 ← F

[zc(rand, f1) �= z
∧

BindBreak(outs1) ≥ 1

p(n)
(5)∧

(trans1, trans21) /∈ B] ≥ 2

3
− 1

2
=

1

6
.

Setting z = zc(rand, f1), since f1 is independent of f0, it
follows that

Pr
f0 ← F,f1 ← F

[
zc(rand, f0) �= zc(rand, f1)

∧
∀i ∈ {0, 1}

BindBreak(outsi) ≥ 1

p(n)

∧
(trans1, trans2i ) /∈ B

]
≥ 2

3
· 1
6

=
1

9
.

Therefore, we conclude that condition that rand ∈ G′,
the following happens with probability at least 1

9
· 1

p(n)2
:

1. both trans0 and trans1 starts with trans1,

2. the first-phase transcripts (i.e., (trans1, trans2i )) in both
trans0 and trans1 are not in B,

3. the value of z in trans0 and in trans1 is different,

4. R̃1
r and R̃2

r accept in both trans0 and trans1.

Since we assume that the density of G′ is non-negligible,

TS
∗

violates the
(
2
1

)
-binding of (S̃, R̃).

Thus, we have concluded the proof of Lemma 3.8 and hence
the proof of Lemma 3.5.
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3.2 Completing the construction
The following corollary follows by the lemmata about

Construction 3.1 (Lemma 3.1 and Lemma 3.5) and the
standard bit-commitment binding amplification (Proposi-
tion 2.9).

Corollary 3.11. There exists an efficient procedure that
given a two-phase commitment scheme and a family of uni-
versal one-way hash functions, outputs a bit-commitment
scheme which is statistically hiding whenever the underlying
protocol is statistically hiding and is computationally binding
whenever the underlying protocol is

(
2
1

)
-binding.

As the existence of one-way functions implies the exis-
tence of universal one-way hash functions of the appropri-
ate input and output lengths (Theorem 2.4) and of a col-
lections of two-phase commitment schemes (for any choice
of message lengths) that are all

(
2
1

)
-binding and at least

one of them is statistically hiding (Theorem 2.13 and Re-
mark 2.14). We have by the above Corollary and the stan-
dard bit-commitment hiding amplification (Proposition 2.8),
that statistical bit-commitment can be constructed using
any one-way function. Finally, the proof of Theorem 1.1 fol-
lows by the above conclusion and the standard transforma-
tion of a bit-commitment scheme into a commitment scheme
of any polynomial length.

Remark 3.12. Note that since the reveal stage of the
commitments guaranteed by Theorem 2.13 are non interac-
tive (i.e., consistent on a single message from the sender to
the receiver), the reveal stage of our commitment scheme is
non-interactive as well.
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